Relating Logic and Relating Semantics. History, Philosophical Applications and Some of Technical Problems
DOI:
https://doi.org/10.12775/LLP.2021.025Keywords
: relating logic, relating semantics, logic of variable inclusion, history of relating logic, epistemic logic, deontic logic, incorporating relationAbstract
Here, we discuss historical, philosophical and technical problems associated with relating logic and relating semantics. To do so, we proceed in three steps. First, Section 1 is devoted to providing an introduction to both relating logic and relating semantics. Second, we address the history of relating semantics and some of the main research directions and their philosophical applications. Third, we discuss some technical problems related to relating semantics, particularly whether the direct incorporation of the relation into the language of relating logic is needed. The starting point for our considerations presented here is the 1st Workshop On Relating Logic and the selected papers for this issue.
References
Epstein, R. L., 1979, “Relatedness and implication”, Philosophical Studies 36: 137–173. DOI: https://doi.org/10.1007/BF00354267
Epstein, R. L., 1987, “The algebra of dependence logic”, Reports on Mathematical Logic 21: 19–34.
Epstein, R. L. (with the assistance and collaboration of: W. Carnielli, I. D’Ottaviano, S. Krajewski, R. Maddux), 1990, The Semantic Foundations of Logic. Volume 1: Propositional Logics, Springer Science+Business Media: Dordrecht. DOI: https://doi.org/10.1007/978-94-009-0525-2
Jarmużek, T., 2021, “Relating semantics as fine-grained semantics for intensional propositional logics”, pages 13–30 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_2
Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: tableau system F”, Bulletin of the Section of Logic 43(1/2): 53–72.
Jarmużek, T., and M. Klonowski, 2020, “On logics of strictly-deontic modalities. A semantic and tableau approach”, Logic and Logical Philosophy 29(3): 335–380. DOI: https://doi.org/10.12775/LLP.2020.010
Jarmużek, T., and M. Klonowski, 2021, “Some intensional logics defined by relating semantics and tableau systems”, pages 31–48 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_3
Jarmużek, T., and M. Klonowski, submitted, “Classical mono-relating logic. Theory and axiomatization”. Jarmużek, T., and M. Klonowski, manuscript, “Axiomatizing Boolean logics with relating implication defined by positive relational properties”.
Jarmużek, T., and J. Malinowski, 2019a, “Boolean connexive logics: semantics and tableau approach”, Logic and Logical Philosophy 28(3): 427–448. DOI: https://doi.org/10.12775/LLP.2019.003
Jarmużek, T., and J. Malinowski, 2019b, “Modal Boolean connexive logics: semantics and tableau approach”, Bulletin of the Section of Logic 48 (3): 213–243. DOI: https://doi.org/10.18778/0138-0680.48.3.05
Klonowski, M., 2018, “A Post-style proof of completeness theorem for Symmetric Relatedness Logic S”, Bulletin of the Section of Logic 47 (3): 201–214. DOI: https://doi.org/10.18778/0138-0680.47.3.05
Klonowski, M., 2019, “Aksjomatyzacja monorelacyjnych logik wiążących” (“Axiomatization of monorelational relating logics”), PhD thesis, Nicolaus Copernicus University in Toruń.
Klonowski, M., 2021, “Axiomatization of some basic and modal Boolean connexive logics”, Logica Universalis. DOI: https://doi.org/10.1007/s11787-021-00291-4
Ledda, A., F. Paoli, and M. P. Baldi, 2019, “Algebraic analysis of demodalised analytic implication”, Journal of Philosophical Logic 48: 957–979. DOI: https://doi.org/10.1007/s10992-019-09502-2
Malinowski, J., and R. Palczewski, 2021, “Relating semantics for connexive logic”, pages 49–65 in A. Giordani and J. Malinowski (eds.), Logic in High Definition. Trends in Logical Semantics, Springer. DOI: https://doi.org/10.1007/978-3-030-53487-5_4
Paoli, F., 1993, “Semantics for first degree relatedness logic”, Reports on Mathematical Logic 27: 81–94.
Paoli, F., 1996, “S is constructively complete”, Reports on Mathematical Logic 30: 31–47.
Paoli, F., 2007, “Tautological entailments and their rivals”, pages 153–175 in J. Y. Béziau, W. A. Carnielli and D. M. Gabbay (eds.), Handbook of Paraconsistency, College Publications: London.
Walton, D. N., 1979a, “Philosophical basis of relatedness logic”, Philosophical Studies 36 (2): 115–136. DOI: https://doi.org/10.1007/BF00354266
Walton, D. N., 1979b, “Relatedness in intensional action chains”, Philosophical Studies 36 (2): 175–223. DOI: https://doi.org/10.1007/BF00354268
Walton, D. N., 1982, Topical Relevance in Argumentation, John Benjamins Publishing Company: Amsterdam–Philadelphia. DOI: https://doi.org/10.1075/pb.iii.8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tomasz Jarmużek, Francesco Paoli
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 986
Number of citations: 0