Varieties of Relevant S5
DOI:
https://doi.org/10.12775/LLP.2022.011Keywords
relevant modal logic, S5, universal necessity, conceptions of necessityAbstract
In classically based modal logic, there are three common conceptions of necessity, the universal conception, the equivalence relation conception, and the axiomatic conception. They provide distinct presentations of the modal logic S5, all of which coincide in the basic modal language. We explore these different conceptions in the context of the relevant logic R, demonstrating where they come apart. This reveals that there are many options for being an S5-ish extension of R. It further reveals a divide between the universal conception of necessity on the one hand, and the axiomatic conception on the other: The latter is consistent with motivations for relevant logics while the former is not. For the committed relevant logician, necessity cannot be the truth in all possible worlds.
References
Anderson, A. R., and N. D. Belnap, 1975, Entailment: The Logic of Relevance and Necessity, Vol. I, Princeton University Press.
Anderson, A. R., N. D. Belnap, and J. M. Dunn, 1992, Entailment: The Logic of Relevance and Necessity, Vol. II, Princeton University Press.
Bednarska, K., and A. Indrzejczak, 2015, “Hypersequent calculi for S5: The methods of cut elimination”, Logic and Logical Philosophy, 24 (3): 277–311. DOI: http://dx.doi.org/10.12775/LLP.2015.018
Bimbó, K., “Relevance logics”, 2007, pages 723–789 in D. Jacquette (ed.), Philosophy of Logic, volume 5 of Handbook of the Philosophy of Science, Elsevier. DOI: http://dx.doi.org/10.1016/B978-044451541-4/50022-1
Bimbó, K., and J. M. Dunn, 2008, Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi, Center for the Study of Language and Information.
Blackburn, P., M. de Rijke, and Y. Venema, 2002, Modal Logic, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9781107050884
Brady, R., editor, 2003, Relevant Logics and Their Rivals, Volume II: A continuation of the work of Richard Sylvan, Robert Meyer, Val Plumwood and Ross Brady, Ashgate.
Brady, R. T., 1988, “A content semantics for quantified relevant logics. I”, Studia Logica, 47 (2): 111–127. DOI: http://dx.doi.org/10.1007/BF00370286
Brady, R. T., 1989, “A content semantics for quantified relevant logics. II”, Studia Logica, 48 (2): 243–257. DOI: http://dx.doi.org/10.1007/BF02770515
Braüner, T., 2000, “A cut-free Gentzen formulation of the modal logic S5”, Logic Journal of the IGPL, 8 (5): 629–643. DOI: http://dx.doi.org/10.1093/jigpal/8.5.629
Caicedo, X., G. Metcalfe, R. Rodríguez, and O. Tuyt, 2019, “The one-variable fragment of Corsi logic”, pages 70–83 in R. Iemhoff, M. Moortgat, and R. de Queiroz, editors, Logic, Language, Information, and Computation, Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-662-59533-6_5
Crossley, J. N., and L. Humberstone, 1977, “The logic of “actually” ” Reports on Mathematical Logic, 8: 11–29.
Dunn, J. M., 1995, “Positive modal logic”, Studia Logica, 55 (2): 301–317. DOI: http://dx.doi.org/10.1007/BF01061239
Dunn, J. M., and G. Restall, 2002, “Relevance logic”, pages 1–136 in D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 6, 2nd edition, Kluwer.
Ferenz, N., 2022, “Quantified modal relevant logics”, Review of Symbolic Logic, pages 1–32. DOI: http://dx.doi.org/10.1017/s1755020321000216
Fine, K., 1988, “Semantics for quantified relevance logic”, Journal of Philosophical Logic, 17 (27–59). DOI: http://dx.doi.org/10.1007/BF00249674
Fine, K., 1989, pages 205–225, “Incompleteness for quantified relevance logics”, in J. Norman and R. Sylvan, editors, Directions in Relevant Logic, Kluwer, Dordrecht. Reprinted in [Anderson et al., 1992, §52]. DOI: http://dx.doi.org/10.1007/978-94-009-1005-8_16
Fuhrmann, A., 1990, “Models for relevant modal logics”, Studia Logica, 49 (4): 501–514. DOI: http://dx.doi.org/10.1007/BF00370161
Garson, J., 2018, “Modal logic”, in E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, fall 2018 edition. https://plato.stanford.edu/entries/logic-modal/
Girard, P., and Z. Weber, 2015, “Bad worlds”, Thought: A Journal of Philosophy, 4 (2): 93–101. DOI: http://dx.doi.org/10.1002/tht3.162
Humberstone, L., “Logical discrimination”, 2005, pages 207–228 in J.-Y. Beziau, editor, Logica Universalis, Birkhäuser Basel. DOI: http://dx.doi.org/10.1007/3-7643-7304-0_12
Humberstone, L., 2016, Philosophical Applications of Modal Logic, College Publications, London.
Indrzejczak, A., 1996, “Cut-free sequent calculus for S5”, Bulletin of the Section of Logic, 25 (2): 95–102.
Indrzejczak, A., 1998, “Cut-free double sequent calculus for S5”, Logic Journal of the IGPL, 6 (3): 505–516. DOI: http://dx.doi.org/10.1093/jigpal/6.3.505
Indrzejczak, A., 2010, Natural Deduction, Hybrid Systems and Modal Logics, vol. 30 of Trends in Logic, Springer. DOI: http://dx.doi.org/10.1007/978-90-481-8785-0
Logan, S. A., 2019, “Notes on stratified semantics” Journal of Philosophical Logic, 48 (4): 749–786. DOI: http://dx.doi.org/10.1007/s10992-018-9493-y
Logan, S. A., 2021, “Strong depth relevance”, The Australasian Journal of Logic, 18 (6): 645–656. DOI: http://dx.doi.org/10.26686/ajl.v18i6.7081
Logan, S. A., 2022, “Depth relevance and hyperformalism”, Journal of Philosophical Logic. DOI: http://dx.doi.org/10.1007/s10992-021-09648-y
Mares, E. D., 1992, “The semantic completeness of RK”, Reports on Mathematical Logic, 26: 3–10.
Mares, E. D., 1994, “Mostly Meyer modal models”, Logique et Analyse, 146: 119–128.
Mares, E. D., 2004, Relevant Logic: A Philosophical Interpretation, Cambridge University Press.
Mares, E. D., 2020, “Relevance logic”, in E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, winter 2020 edition. https://plato.stanford.edu/entries/logic-relevance/
Mares, E. D., and R. Goldblatt, 2006, “An alternative semantics for quantified relevant logic”, The Journal of Symbolic Logic, 71 (1): 163–187. DOI: http://dx.doi.org/10.2178/jsl/1140641167
Mares, E. D., and R. K. Meyer, 1993, “The semantics of R4”, Journal of Philosophical Logic, 22 (1): 95–110. DOI: http://dx.doi.org/10.1007/BF01049182
Mares, E. D., and S. Standefer, 2017, “The relevant logic E and some close neighbours: A reinterpretation”, IfCoLog Journal of Logics and Their Applications, 4 (3): 695–730.
Meyer, R. K., 1966, “Topics in modal and many-valued logic”, PhD thesis, University of Pittsburgh.
Meyer, R. K., and E. D. Mares, 1993, “Semantics of entailment 0”, pages 239–258 in P. Schroeder-Heister and K. Došen, editors, Substructural Logics, Oxford Science Publications.
Mints, G., 1992, A Short Introduction to Modal Logic, Center for the Study of Language and Information.
Ohnishi, M., and K. Matsumoto, 1957, “Gentzen method in modal calculi”, Osaka Mathematical Journal, 9 (2): 113–130.
Parks, Z., and M. Byrd, 1989, “Relevant implication and Leibnizian necessity”, pages 179–184 in J. Norman and R. Sylvan, editors, Directions in Relevant Logic, Kluwer Academic Publishers. DOI: http://dx.doi.org/10.1007/978-94-009-1005-8_13
Poggiolesi, F., 2008, “A cut-free simple sequent calculus for modal logic S5”, Review of Symbolic Logic, 1 (1): 3–15. DOI: http://dx.doi.org/10.1017/S1755020308080040
Poggiolesi, F., 2011, Gentzen Calculi for Modal Propositional Logic, volume 32 of Trends in Logic, Springer. DOI: http://dx.doi.org/10.1007/978-90-481-9670-8
Porte, J., 1981, “The deducibilities of S5”, Journal of Philosophical Logic, 10 (4): 409–422. DOI: http://dx.doi.org/10.1007/BF00248735
Prawitz, D., 1965, Natural Deduction: A Proof-Theoretical Study, Almqvist and Wicksell.
Priest, G., 2008, An Introduction to Non-Classical Logic: From If to Is, Cambridge University Press. DOI: http://dx.doi.org/10.1017/CBO9780511801174
Priest, G., and R. Sylvan, 1992, “Simplified semantics for basic relevant logics”, Journal of Philosophical Logic, 21 (2): 217–232. DOI: http://dx.doi.org/10.1007/BF00248640
Read, S., 1988, Relevant Logic: A Philosophical Examination of Inference, Blackwell.
Restall, G., 1993, “Simplified semantics for relevant logics (and some of their rivals)”, Journal of Philosophical Logic, 22 (5): 481–511. DOI: http://dx.doi.org/10.1007/BF01349561
Restall, G., 2000, An Introduction to Substructural Logics, Routledge.
Restall, G., 2007, “Proofnets for S5: Sequents and circuits for modal logic”, pages 151–172 in C. Dimitracopoulos, L. Newelski, and D. Normann, editors, Logic Colloquium 2005, Cambridge: Cambridge University Press.
Restall, G., and T. Roy, 2009, “On permutation in simplified semantics”, Journal of Philosophical Logic, 38 (3): 333–341. DOI: http://dx.doi.org/10.1007/s10992-009-9104-z
Robles, G., and J. M. Méndez, 2011, “A class of simpler logical matrices for the variable-sharing property”, Logic and Logical Philosophy, 20 (3): 241–249. DOI: http://dx.doi.org/10.12775/LLP.2011.014
Robles, G., and J. M. Méndez, 2012, “A general characterization of the variable sharing property by means of logical matrices”, Notre Dame Journal of Formal Logic, 53 (2): 223–244. DOI: http://dx.doi.org/10.1215/00294527-1715707
Routley, R., and R. K. Meyer, 1972, “The semantics of entailment – II”, Journal of Philosophical Logic, 1 (1): 53–73. DOI: http://dx.doi.org/10.1007/BF00649991
Routley, R., V. Plumwood, R. K. Meyer, and R. T. Brady, 1982, Relevant Logics and Their Rivals, volume 1, Ridgeview.
Sedlár, I., 2015, “Substructural epistemic logics.”, Journal of Applied Non-Classical Logics, 25 (3): 256–285. DOI: http://dx.doi.org/10.1080/11663081.2015.1094313
Seki, T., 2003, “A Sahlqvist theorem for relevant modal logics”, Studia Logica, 73 (3): 383–411. DOI: http://dx.doi.org/10.1023/A:1023335229747
Slaney, J. K., 1987, “Reduced models for relevant logics without WI”, Notre Dame Journal of Formal Logic, 28 (3): 395–407. DOI: http://dx.doi.org/10.1305/ndjfl/1093637560
Standefer, S., 2020, “Actual issues for relevant logics”, Ergo, 7 (8): 241–276. DOI: http://dx.doi.org/10.3998/ergo.12405314.0007.008
Standefer, S., 2021, “An incompleteness result for modal relevant logics”, Notre Dame Journal of Formal Logic, 62 (4): 669–681. http://dx.doi.org/DOI: 10.1215/00294527-2021-0035
Standefer, S., 2022, “What is a relevant connective?”, Journal of Philosophical Logic. Forthcoming.
Standefer, S., 202x, “Completeness via metacompleteness”, in K. Bimbó, editor, Essays in Honor of J. Michael Dunn, College Publications. Forthcoming.
Weber, Z., G. Badia, and P. Girard, 2016, “What is an inconsistent truth table?”, Australasian Journal of Philosophy, 94 (3): 533–548. DOI: http://dx.doi.org/10.1080/00048402.2015.1093010
Yang, E., 2013, “R and relevance principle revisited”, Journal of Philosophical Logic, 42 (5): 767–782. DOI: http://dx.doi.org/10.1007/s10992-012-9247-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Logic and Logical Philosophy

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 1626
Number of citations: 0