Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

The Collatz conjecture. A case study in mathematical problem solving
  • Home
  • /
  • The Collatz conjecture. A case study in mathematical problem solving
  1. Home /
  2. Archives /
  3. Vol. 14 No. 1 (2005) /
  4. Articles

The Collatz conjecture. A case study in mathematical problem solving

Authors

  • Jean Paul Van Bendegem Vrije Universiteit Brussel and Universiteit Gent

DOI:

https://doi.org/10.12775/LLP.2005.002

Abstract

In previous papers (see Van Bendegem [1993], [1996], [1998], [2000], [2004], [2005], and jointly with Van Kerkhove [2005]) we have proposed the idea that, if we look at what mathematicians do in their daily work, one will find that conceiving and writing down proofs does not fully capture their activity. In other words, it is of course true that mathematicians spend lots of time proving theorems, but at the same time they also spend lots of time preparing the ground, if you like, to construct a proof.

Author Biography

Jean Paul Van Bendegem, Vrije Universiteit Brussel and Universiteit Gent

Centrum voor Logica en Wetenschapsfilosofie

References

Boolos, G.S., J.P. Burgess, and R.C. Jeffrey, Computability and Logic. Fourth edition. Cambridge University Press, Cambridge, 2002.

Conway, J.H., “Unpredictable Iterations”. In: Proceedings 1972 Number Theory Conference. University of Colorado, Boulder, CO, 1972, pp. 49–52.

Edwards, H.M., Riemann’s Zeta Function. Academic Press, New York, 1974 (Dover Publications, New York, 2001).

Hayes, B., “Computer Recreations. On the ups and downs of hailstone numbers.” Scientific American, vol. 250, nr. 1, 1984, 13–17.

Lagarias, J.C., “The 3x+1 problem and its generalizations”. American Mathematical Monthly, 92, 1985, 3–23.

Lagarias, J.C., “The 3x+1 problem and its generalizations”. 1996. Web-address: http://www.cecm.sfu.ca/organics/papers/lagarias/index.html

Lagarias, J.C., “The 3x+1 problem: an annotated bibliography”. 2004. Webaddress: http://arxiv.org/PS_cache/math/pdf/0309/0309224.pdf

Lakoff, G., and R.E. Nunez, Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being. Basic Books, New York, 2000.

Lenat, Douglas B., “AM: Discovery in Mathematics as Heuristic Search”. In: R. Davis and D.B. Lenat (eds.), Knowledge-Based Systems in Artificial Intelligence. New York: McGraw-Hill, 1980, pp. 3–228.

Ribenboim, P., 13 Lectures on Fermat’s Last Theorem. Springer, New York, 1979.

Van Bendegem, J.P., “Real-Life Mathematics versus Ideal Mathematics: The Ugly Truth”. In: E.C.W. Krabbe, R.J. Dalitz and P.A. Smit (eds.), Empirical Logic and Public Debate. Essays in Honour of Else M. Barth, Rodopi, Amsterdam, 1993, pp. 263–272.

Van Bendegem, J.P., “Mathematical Experiments and Mathematical Pictures”. In: I. Douven and L. Horsten (eds.), Realism in the Sciences. Proceedings of the Ernan McMullin Symposium Leuven 1995. Louvain Philosophical Studies 10. Leuven University Press, Louvain, 1996, pp. 203–216.

Van Bendegem, J.P., “What, if anything, is an experiment in mathematics?” In: D. Anapolitanos, A. Baltas and S. Tsinorema (eds.), Philosophy and the Many Faces of Science, (CPS Publications in the Philosophy of Science), Rowman and Littlefield, London, 1998, pp. 172–182.

Van Bendegem, J.P., “Analogy and Metaphor as Essentials Tools for the Working Mathematician”. In: F. Hallyn (ed.), Metaphor and Analogy in the Sciences, (Origins: Studies in the Sources of Scientific Creativity), Kluwer Academic, Dodrecht, 2000, pp. 105–123.

Van Bendegem, J.P., “The Creative Growth of Mathematics”. In: D. Gabbay, S. Rahman, J. Symons and J.P. Van Bendegem (eds.), Logic, Epistemology and the Unity of Science (LEUS), Volume 1, Dordrecht: Kluwer Academic, 2004, pp. 229–255.

Van Bendegem, J.P., “Proofs and Arguments: The Special Case of Mathematics”. In: Logics of Scientific Cognition. Essays in Debate With Theo Kuipers, Poznan Studies, Rodopi, Amsterdam, 2005, to appear.

Van Kerkhove, B., and J.P. Van Bendegem: “The Unreasonable Richness of Mathematics”. Journal of Cognition and Culture, 2005, to appear.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2005-06-23

How to Cite

1.
VAN BENDEGEM, Jean Paul. The Collatz conjecture. A case study in mathematical problem solving. Logic and Logical Philosophy. Online. 23 June 2005. Vol. 14, no. 1, pp. 7-23. [Accessed 28 June 2025]. DOI 10.12775/LLP.2005.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 14 No. 1 (2005)

Section

Articles

Stats

Number of views and downloads: 2568
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop