The Impact Of Competencies On Wages Of Employees In The Context Of Employers’ Expectations – Poland In The Light Of Eu Countries
DOI:
https://doi.org/10.12775/EiP.2025.16Keywords
competencies, wages, logit model, PolandAbstract
Motivation: Competencies are an important feature from the perspective of both the employer and the job candidate. On the one hand, the employer is looking for candidates with specific competencies on the market and is willing to pay a specific salary for them. On the other hand, from the perspective of the job candidate, it is important to know which competencies are the best paid. In this way, the job candidate can direct their professional development in order to gain these competencies. Hence, research was undertaken to identify the best paid competencies.
Aim: The purpose of this article is to identify the competencies of employees that determine obtaining a salary at least at the level of the average salary in the economy.
Results: Based on individual data from Poles derived from the Human Capital Balance for 2021 (partially 2022), three logistic regression models were estimated: for the entire sample, for women, and for men. Significant variables for all models are age, education level, as well as willingness to work unusual hours required by the employer, willingness to travel frequently. It is worth considering which characteristics and competencies are specific to each model and positively influence the receipt of a high salary. Thus, in the case of the general model, gender, possession of a category B driver's license and the ability to use a computer, tablet and smartphone turn out to be important. In the case of women, the ability to use specialized computer programs, as well as to work with people of different nationalities, influences higher salaries. For men, the competency that gives them the opportunity for higher salaries is analyzing information and drawing conclusions.
References
Antosz, P. (2018). Metodologia badania: bilans kapitału ludzkiego 2016-2023, PARP, Uniwersytet Jagielloński, Warszawa.
Asefer, A., &Abidin, Z. (2021). Soft Skills And Graduates Employability In The 21st Century From Employers’ Perspectives: A Review Of Literature, International Journal of Infrastructure Research and Management, 9(2), 44-59.
Auspurg, K., Hinz, T., & Sauer C. (2017). Why Should Women Get Less? Evidence on the Gender Pay Gap from Multifactorial Survey Experiments, American Sociological Review, 82(1), 179-210.https://doi.org/10.1177/0003122416683393.
Bilian, Y., Mishchuk H., &Dzhyhar T. (2017). Human capital factors and remuneration: analysis of relations, modeling of influence, Verslas: Teorijairpraktika, vol. 18 (2), 208-214.https://doi.org/10.3846/btp.2017.022.
Blau, F.D., & Kahn L.M. (2017). The gender wage gap: Extent, trends, and explanations, Journal of Economic Literature, 55(3), 789-865. https://doi.org/10.1257/jel.20160995.
Cabrera N., López M. C.,& Portillo C. (2016). Las competencias de los graduados y suevaluacióndesde la perspectiva de los empleadores, EstudiosPedadódicos, 43 (3), https://dx.doi.org/10.4067/S0718-07052016000400004.
De Haro, J.M., García-Izquierdo, M., Castaño, A., &García-Izquierdo, A.L. (2023). Predictive Competences of High-potential Talent Employees, Journal of Work and Organizational Psychology, 39 (3), 121-130. https://doi.org/10.5093/jwop2023a16.
Dymek-Maciejewska, M. (2018). The perfect employee? Non-formal competences – expectations and reality, Journal of Modern Science, 37(2), 11-21. https://doi.org/10.13166/jms/89884.
Goraus, K., Tyrowicz, J., & van der Velde, L. (2017). Which gender wage gap estimates to trust, A comparative analysis, The review of income and wealth, 63 (1),118-146. https://doi.org/10.1111/roiw.12209.
Górniak, J., Kocór, M., Prokopowicz, P., & Szczucka, A. (2022).Bilans kapitału ludzkiego 2022/2021: raport z badania pracodawców: powrót do rzeczywistości: drugi rok pandemii oczami polskich firm, PARP, Uniwersytet Jagielloński, Warszawa.
Grabowski W. (2019), Modele wielopoziomowe. Wykorzystywanie danych regionalnych w badaniach mikroekonomicznych i socjologicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Gruszczyński, M. (2012). Tablica trafności oraz krzywa ROC. In M. Gruszczyński (Ed.), Mikroekonometria. Modele i metody analizy danych indywidualnych, Warszawa, Wolters Kluwer business.
Grzybowska, K., &Łupicka, A. (2018). Key Managerial Competencies for Industry 4.0 - Practitioners’, Researchers' and Students' Opinions, Logistics and Transport, 39 (3), 39-46. https://doi.org/10.26411/83-1734-2015-3-39-4-18.
European Commission, https://joint-research-centre.ec.europa.eu/projects-and-activities/skills-and-competences/defining-skill-and-competence_en.
Kamorska, E., Krystosiak, I., Strzelecka, H., Tuszyńska, E., Winiarz, A., Żelazny T. (2020). Methodological report Wages and salaries in the national economy, GUS, Warszawa.
Kantane, I., Sloka, B., Buligina, I., Tora, G., Busevica, R., Buligina, A., Dzelme, J., Tora, P. (2015). Expectations by Employers on Skills, Knowledge and Attitudes of Employees, European Integration Studies, 9(9), 224-234.https://doi.org/10.5755/j01.eis.0.9.12809.
Kompa, K.,&Witkowska, D. (2018). Factors affecting men’s and women’s earnings in Poland, Economic Research-EkonomskaIstraživanja, 31 (1), 252-269. https://doi.org/10.1080/1331677X.2018.1426480.
Kufel, T. (2011). Ekonometria: rozwiązywanie problemów z wykorzystaniem programu GRETL, Wydawnictwo Naukowe PWN.
Matei, M. (2015), Romanian Employers Expectations And The Influence Of The Cultural Factor, Annals of Faculty of Economics, University of Oradea, Faculty of Economics, 1(2), 538-544.
Mierzwa, D. (2023). The role of salary and other non-wage factors in the employee motivation system, Catholic Pedagogy, 33a.https://doi.org/10.62266/PK.1898-3685.2023.33a.23.
Sloka, B., Kantāne, I., Buligina, I., Tora, G., Dzelme, J., Buševica, R., Buligina, A., Tora, P. (2015).Employers’ Needs and Expectations for Qualified Employees (Case Study on the Opinions in One of the Regions in Latvia), Economics and Business, 27. 69-75.https://doi.org/10.1515/eb-2015-0011.
Staiculescu, C., Lacatus, M. L., &Livinti, R. (2021). Employers expectations and requirements. Case study: Employers of Schools of Economics and Business Graduates in Romania, Proceedings of the International Conference on Business Excellence, 15(1), 185-195. https://doi.org/10.2478/picbe-2021-0018.
Stasiura, E., &Konstanty, A. (2015). Modelowanie czynników społeczno-demograficznych wpływających na decyzje o wyjeździe za granicę.InK. Woźniak K. (Ed.) Narzędzia analityczne w naukach ekonomicznych, Miles.pl, Kraków.
Sujová, E., Cierna, H., Simanová, L’., Gejdoš, P., &Štefková, J. (2021). Soft Skills Integration into Business Processes Based on the Requirements of Employers—Approach for Sustainable Education, Sustainability, 13 (24). https://doi.org/10.3390/su132413807.
Sury M., https://www.livecareer.pl/prawo-pracy/przecietne-wynagrodzenie, (02.02.2025).
Śliwicki, D. (2015), Różnice w wynagrodzeniach mężczyzn i kobiet w województwach, Wiadomości Statystyczne. The Polish Statistician, 10, 17-28
Śliwicki, D., &Ręklewski, M. (2014), Application of the Logit Model to the Analysis of Economic Activity Factors of the Disabled, OeconomiaCopernicana, 5 (3), 75-92. https://doi.org/10.12775/OeC.2014.020.
Śliwicki, D.,&Ryczkowski, M. (2014). Gender pay gap in the micro level –case of Poland, Quantitative Methods in Economics, 15. 159-173.
Topolewska, K. (2023). Competencies as determinant of remuneration, Scientific Papers of Silesian University of Technology. Organization and Management Series, 194, 581-593. https://doi.org/10.29119/1641-3466.2024.194.34.
Walesiak, M. (2011). Modelowanie i prognozowanie zmiennych dwumianowych.InM. Walesiak (ed.), Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R(99-111). Wydawnictwo C.H. Beck, Warszawa.
Witkowska, D, Matuszewska-Janica, A, & Mentel, G. (2019). Determinanty wynagrodzeń w wybranych państwach Unii Europejskiej, Roczniki Kolegium Analiz Ekonomicznych, 55, 9-24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kamila Topolewska, Łukasz Topolewski

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 158
Number of citations: 0