Measuring Macroeconomic Uncertainty Using Internet Search Data: The Case of Poland
DOI:
https://doi.org/10.12775/EiP.2025.13Keywords
uncertainty, perception of incertainty, google trendsAbstract
Motivation: Despite extensive discussion, measuring uncertainty – especially macroeconomic uncertainty – remains an open issue. While valuable, traditional data sources may be temporally or spatially limited and may not accurately capture public sentiment or the uncertainty perceived by diverse social groups such as households, especially considering the recent transition from traditional media to electronic.
Aim: A new Macroeconomic Uncertainty Index (MUI) for Poland, covering the period from 2004 to 2024 is presented and evaluated. This index utilizes the behavior of economic agents expressed through online search patterns, providing a real-time tool for assessing economic uncertainty.
Results: The MUI captures uncertainty perceived by diverse social groups, particularly considering the recent transition from traditional media to electronic channels of information flow. Comparative analysis revealed the unique characteristics of the MUI compared to other uncertainty indicators, such as survey-based and text-based measures, emphasizing the need for multiple metrics to fully capture the multifaceted nature of macroeconomic uncertainty. The MUI provides an alternative to traditional measures, making it especially valuable for studies on public responses to macroeconomic changes.
References
Alquist, J. L., & Baumeister, R. F. (2023). Dealing with uncertain situations. The Journal of Positive Psychology, 1–24. https://doi.org/10.1080/17439760.2023.2282781
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024
Bar-Anan, Y., Wilson, T. D., & Gilbert, D. T. (2009). The feeling of uncertainty intensifies affective reactions. Emotion, 9(1), 123–127. https://doi.org/10.1037/a0014607
Bleher, J., & Dimpfl, T. (2022). Knitting Multi-Annual High-Frequency Google Trends to Predict Inflation and Consumption. Econometrics and Statistics, 24, 1–26. https://doi.org/10.1016/j.ecosta.2021.10.006
Bontempi, M. E., Frigeri, M., Golinelli, R., & Squadrani, M. (2021). EURQ: A New Web Search-based Uncertainty Index. Economica, 88(352), 969–1015. https://doi.org/10.1111/ecca.12372
Bouri, E., & Gupta, R. (2021). Predicting Bitcoin returns: Comparing the roles of newspaper- and internet search-based measures of uncertainty. Finance Research Letters, 38, 101398. https://doi.org/10.1016/j.frl.2019.101398
Caldara, D., & Iacoviello, M. (2022). Measuring Geopolitical Risk. American Economic Review, 112(4), 1194–1225. https://doi.org/10.1257/aer.20191823
Cascaldi-Garcia, D., Sarisoy, C., Londono, J. M., Sun, B., Datta, D. D., Ferreira, T., Grishchenko, O., Jahan-Parvar, M. R., Loria, F., Ma, S., Rodriguez, M., Zer, I., & Rogers, J. (2023). What Is Certain about Uncertainty? Journal of Economic Literature, 61(2), 624–654. https://doi.org/10.1257/jel.20211645
Castelnuovo, E., & Tran, T. D. (2017). Google It Up! A Google Trends-based Uncertainty index for the United States and Australia. Economics Letters, 161, 149–153. https://doi.org/10.1016/j.econlet.2017.09.032
Cebrián, E., & Domenech, J. (2023). Is Google Trends a quality data source? Applied Economics Letters, 30(6), 811–815. https://doi.org/10.1080/13504851.2021.2023088
Census (2024). https://www.census.gov/data/software/x13as.X-13ARIMA-SEATS.html
Claus, E., & Dedewanou, F. A. (2024). Expectations, beliefs, and perceptions in the modern economy: An overview. Journal of Economic Surveys, 38(2), 297–302. https://doi.org/10.1111/joes.12610
DeMartino, G., Grabel, I., & Scoones, I. (2024). Economics for an uncertain world. World Development, 173, 106426. https://doi.org/10.1016/j.worlddev.2023.106426 https://doi.org/10.1016/j.worlddev.2023.106426
Donadelli, M., & Gerotto, L. (2019). Non-macro-based Google searches, uncertainty, and real economic activity. Research in International Business and Finance, 48, 111–142. https://doi.org/10.1016/j.ribaf.2018.12.007
Dräger, L., & Lamla, M. J. (2024). Consumers’ macroeconomic expectations. Journal of Economic Surveys, 38(2), 427–451. https://doi.org/10.1111/joes.12590
Dzielinski, M. (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, 9(3), 167–175 https://doi.org/10.1016/j.frl.2011.10.003
Economic Uncertainty (2024). Economic Policy Uncertainty Index. https://www.policyuncertainty.com/ Accessed 14.10.2024
European Commission. (2024). Uncertainty indicators. https://economy-finance.ec.europa.eu/economic-forecast-and-surveys/business-and-consumer-surveys/download-business--and-consumer-survey-data/time-series_en Accessed 14.10.2024
Eichenauer, V. Z., Indergand, R., Martínez, I. Z., & Sax, C. (2022). Obtaining consistent time series from Google Trends. Economic Inquiry, 60(2), 694–705. https://doi.org/10.1111/ecin.13049
GT. (2024). https://trends.google.com/trends/ Accessed 14.10.2024
Hołda Z. (2019). Newspaper-based economic uncertainty indices for Poland, NBP Working Paper No. 310
Huang, M. Y., Rojas, R. R., & Convery, P. D. (2020). Forecasting stock market movements using Google Trend searches. Empirical Economics, 59(6), 2821–2839. https://doi.org/10.1007/s00181-019-01725-1
Iacoviello, M., Caldara, D., Penn, M., & Conlisk, S. (2024). Do Geopolitical Risks Raise or Lower Inflation? SSRN Scholarly Paper 4852461. Social Science Research Network. https://doi.org/10.2139/ssrn.4852461
IMF. (2024). World Uncertainty Index. https://worlduncertaintyindex.com/data/ Accessed 14.10.2024
Johnson, S. G. B., Bilovich, A., & Tuckett, D. (2023). Conviction Narrative Theory: A theory of choice under radical uncertainty. Behavioral and Brain Sciences, 46, e82. https://doi.org/10.1017/S0140525X22001157
Kupfer, A., & Zorn, J. (2020). A Language-Independent Measurement of Economic Policy Uncertainty in Eastern European Countries. Emerging Markets Finance and Trade, 56(5), 1166–1180. https://doi.org/10.1080/1540496X.2018.1559140
Mulero, R., & Garcia-Hiernaux, A. (2023). Forecasting unemployment with Google Trends: Age, gender and digital divide. Empirical Economics, 65(2), 587–605. https://doi.org/10.1007/s00181-022-02347-w
Murtin, F., & Salomon-Ermel, M. (2024). Nowcasting subjective well-being with Google Trends. A meta-learning approach. OECD Papers on Well-Being and Inequalities, 28(27). https://doi.org/10.1787/f758bd20-en
OECD (2008). Handbook on Constructing Composite Indicators. Methodology and User Guide, Paris https://doi.org/10.1787/9789264043466-en
Petropoulos, A., Siakoulis, V., Stavroulakis, E., Lazaris, P., & Vlachogiannakis, N. (2022). Employing Google Trends and Deep Learning in Forecasting Financial Market Turbulence. Journal of Behavioral Finance, 23(3), 353–365. https://doi.org/10.1080/15427560.2021.1913160
Pratap, B., & Priyaranjan, N. (2023). Macroeconomic effects of uncertainty: A Google trends-based analysis for India. Empirical Economics, 65(4), 1599–1625. https://doi.org/10.1007/s00181-023-02392-z
Puhr, H., & Müllner, J. (2024). Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends. Journal of International Management, 30(2), 101096. https://doi.org/10.1016/j.intman.2023.101096
Rowe, W. D. (1994). Understanding Uncertainty. Risk Analysis, 14(5), 743–750. https://doi.org/10.1111/j.1539-6924.1994.tb00284.x
Schulz, M., & Zinn, J. O. (2023). Rationales of risk and uncertainty and their epistemological foundation by new phenomenology. Journal of Risk Research, 26(3), 219–232. https://doi.org/10.1080/13669877.2022.2162105
Statistics Poland. (2024). Koniunktura konsumencka – grudzień 2023 roku. https://stat.gov.pl/obszary-tematyczne/koniunktura/koniunktura/koniunktura-konsumencka-wrzesien-2024-roku,1,130.html Accessed 14.10.2024
Szczygielski, J. J., Charteris, A., & Obojska, L. (2023). Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence. International Review of Financial Analysis, 87, 102304. https://doi.org/10.1016/j.irfa.2022.102304
Szczygielski, J. J., Charteris, A., Bwanya, P. R., & Brzeszczyński, J. (2024). Google search trends and stock markets: Sentiment, attention or uncertainty? International Review of Financial Analysis, 91, 102549. https://doi.org/10.1016/j.irfa.2023.102549
Woloszko, N. (2020). Tracking activity in real time with Google Trends, OECD Economics Department Working Papers, No. 1634, OECD Publishing, Paris, https://doi.org/10.1787/6b9c7518-en.
Woo, J., & Owen, A. L. (2019). Forecasting private consumption with Google Trends data. Journal of Forecasting, 38(2), 81–91. https://doi.org/10.1002/for.2559
Zinn, J. O. (2016). ‘In-between’ and other reasonable ways to deal with risk and uncertainty: A review article. Health, Risk & Society, 18(7–8), 348–366. https://doi.org/10.1080/13698575.2016.1269879
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jacek Pietrucha, Micjał Gulewicz

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 170
Number of citations: 0