Predictive capacities of social media in the financial market: ARX-GARCH model
DOI:
https://doi.org/10.12775/EiP.2025.01Keywords
behavioral economics; ARX-GARCH; sentiment analysis; social media newsAbstract
Motivation: Social media platforms have emerged as a new data source for social sciences. The data extracted from them, known as big social data, are characterized by their complexity and are described within the ‘V’ big data model. Literature has demonstrated the influence of investor activity, as captured by BSD, on the stock market. Modeling the stock market using Twitter data allows for the capture of real-time market sentiments, potentially enhancing the accuracy of financial forecasts. The value of such models lies in their ability to identify subtle yet significant signals that traditional methods might overlook.
Aim: The aim of this study is to explore the predictive capabilities of Twitter sentiment on financial markets, specifically focusing on the application of ARX-GARCH models to analyze the impact of both, negative and positive class of emotions on market volatility.
Results: Incorporating sentiment variables into the ARX-GARCH models did not significantly enhance their predictive capabilities. While sentiment variables did not broadly improve model performance, certain variables demonstrated statistical significance at various lag levels. This indicates that some sentiments might have a delayed impact on market returns, though the overall effect size was small. Among the sentiment indicators analyzed, those based on n-gram analysis and the bullish index outperformed others, including the volume of individual emotions like anger, fear, and sadness.
References
Abdollahi, H. (2023). Oil price volatility and new evidence from news and Twitter. Energy Economics, 122, 106711. https://doi.org/10.1016/j.eneco.2023.106711
Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of Finance, 59, 1259-1294. doi:10.1111/j.1540-6261.2004.00662.x
Asur, S., & Huberman, B. (2010). Predicting the future with social media. In Pro-ceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intel-ligence and Intelligent Agent Technology (Vol. 1, pp. 492-499). IEEE Computer Society.
Attigeri, G. V., Manohara Pai, M. M., Pai, R. M., & Nayak, A. (2015). Stock market prediction: A big data approach. TENCON 2015 - 2015 IEEE Region 10 Confer-ence, 1-5. https://doi.org/10.1109/TENCON.2015.7373006
Audrino, F., Sigrist, F., & Ballinari, D. (2020). The impact of sentiment and atten-tion measures on stock market volatility. International Journal of Forecasting, 36(2), 334-357. ISSN 0169-2070. https://doi.org/10.1016/j.ijforecast.2019.05.010.
Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achieve-ments and new challenges. Information Fusion, 28, 45-59.
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
Bomfim, A. N. (2003). Pre-announcement effects, news effects, and volatility: Monetary policy and the stock market. Journal of Banking & Finance, 27(1), 133-151.
Brenner, M., Pasquariello, P., & Subrahmanyam, M. (2009). On the volatility and comovement of US financial markets around macroeconomic news announce-ments. Journal of Financial and Quantitative Analysis, 44(6), 1265-1289.
Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature selection for text classifica-tion with Naïve Bayes. Expert Systems with Applications, 36, 5432-5435. doi: 10.1016/j.eswa.2008.06.054.
Effrosynidis, D., Symeonidis, S., & Arampatzis, A. (2017). A Comparison of Pre-processing Techniques for Twitter Sentiment Analysis. In 21st International Conference on Theory and Practice of Digital Libraries (TPDL 2017), LNCS 10450 (pp. 421-426). Thessaloniki, Greece: Springer. doi: 10.1007/978-3-319-67008-9_31
Ekman, P. (1972). Universals and cultural differences in facial expressions of emo-tion. In J. Cole (Ed.), Nebraska symposium on motivation, 1971 (pp. 207-283). Lincoln: University of Nebraska Press.
Feldman Barrett, L. (2018). Jak powstają emocje? Sekretne życie mózgu. Warsza-wa: CeDeWu Sp. z o.o.
Ferrara, E., & Yang, Z. (2015). Measuring emotional contagion in social media. PLoS ONE, 10(11), e0142390. https://doi.org/10.1371/journal.pone.0142390
Fiszeder, P. (2009). Modele klasy GARCH w empirycznych badaniach finanso-wych [eBook]. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009).
Hastie, T., Tibshirani, R., & Friedman, J. (2001). Elements of statistical learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA. Online Access (Accessed on March 15, 2019): Retrieved from https://web.stanford.edu/~hastie/Papers/ESLII.pdf
Ishikawa, H. (2015). Social Big Data Mining. CRC Press. https://doi.org/10.1201/b18223
Jabeen, A., Yasir, M., Ansari, Y., Yasmin, S., Moon, J., & Rho, S. (2022). An empiri-cal study of macroeconomic factors and stock returns in the context of econom-ic uncertainty news sentiment using machine learning. Complexity.
Jansen, B., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter Power: Tweets as electronic word of mouth. Journal of the American Society for Information Sci-ence and Technology, 60(11), 2169-2188.
Jensen, E. (2017). Putting the methodological brakes on claims to measure nation-al happiness through Twitter: Methodological limitations in social media ana-lytics. PloS one, 12, e0180080. https://doi.org/10.1371/journal.pone.0180080.
Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing tech-niques on Twitter sentiment analysis. In 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-6). IEEE. doi: 10.1109/IISA.2016.7785373
Kufel, T. (2010). Cykle gospodarcze i modele ekonometryczne. Wydawnictwo Na-ukowe Uniwersytetu Mikołaja Kopernika.
Laney, D. (2001). 3D data management: controlling data volume, velocity, and variety. Meta Group Research Note, 6, 70–73.
Liang, F., & Lu, S. (2023). The dynamics of event-based political influencers on Twitter. Social Media + Society, 9(3), 1-12. https://doi.org/10.1177/20563051231177
Liu, B. (2012). Sentiment Analysis and Opinion Mining (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-031-02145-9
Lucca, D. O., & Moench, E. (2015). The pre-FOMC announcement drift. Journal of Finance, 70(1), 329-371.
Manovich, L. (2011). Trending: The promises and the challenges of big social data. https://manovich.net/content/old/03-articles/64-article-2011/64-article-2011.pdf
Mao, Y., Wei, W., & Liu, B. (2012). Correlating S&P 500 stocks with Twitter data. In Proceedings of the ACM SIGKDD Workshop on Sentiment Analysis in Social Media (pp. 69-72). DOI: 10.1145/2392622.2392634
Michalak, J. (2021). Opportunities and challenges of big social data analytics based on examples from psychology. In K. S. Soliman (Ed.), Innovation man-agement and information technology impact on global economy in the era of pandemic: Proceedings of the 37th International Business Information Man-agement Association Conference (IBIMA), 30-31 May 2021, Cordoba, Spain (pp. 6374-6381).
Michalak, J., & Kruszewski, T. (2021). Pandemia a reakcje inwestorów: analiza big data komunikatorów z Twittera wobec zjawiska niepewności. Toruń: To-warzystwo Naukowe Organizacji i Kierownictwa.
Möbert, J. (2009). Dispersion in beliefs among speculators as a determinant of crude oil prices. Deutsche Bank Research, Research Notes, 32.
Nofsinger, J. R. (2005). Social mood and financial economics. Journal of Behavioral Finance, 6(3), 144–160.
Pagolu, V. S., Challa, K. N. R., Panda, G., & Majhi, B. (2016). Sentiment analysis of Twitter data for predicting stock market movements. CoRR, abs/1610.09225.
Plutchik, R. (1980). Chapter 1 - A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION. In R. Plutchik & H. Kellerman (Eds.), Theories of Emotion (pp. 3-33). Academic Press. doi:10.1016/B978-0-12-558701-3.50007-7.
Porshnev, A. V., Lakshina, V. V., & Redkin, I. E. (2016). Using emotional markers' frequencies in stock market ARMAX-GARCH model (MPRA Paper No. 82875). University Library of Munich, Germany.
Rao, T., & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. In Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012) (pp. 119-123). https://doi.org/10.1109/ASONAM.2012.30
Reinsel, D., Gantz, J., & Rydning, J. (2017, April). Data Age 2025: The Evolution of Data to Life-Critical. [White paper]. Seagate Technology LLC. Retrieved from https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
Ross, S. A. (1989). Information and volatility: The no-arbitrage martingale ap-proach to timing and resolution irrelevancy. Journal of Finance, 44(1), 1-17.
Tyszka, T. (2010). Decyzje. Perspektywa psychologiczna i ekonomiczna. W: J. Brzeziński (red.), Wykłady z psychologii (t. 16, s. 299-327). Warszawa: Wy-dawnictwo Naukowe SCHOLAR.
Xiong, X., Li, Y., Qiao, S., Han, N., Wu, Y., Peng, J., & Li, B. (2018). An emotional contagion model for heterogeneous social media with multiple behaviors. Phys-ica A: Statistical Mechanics and its Applications, 490, 185–202. https://doi.org/10.1016/j.physa.2017.08.025
Zhang, X., Fuehres, H., & Gloor, P. (2011). Predicting Stock Market Indicators Through Twitter – “I Hope it is Not as Bad as I Fear. Procedia - Social and Be-havioral Sciences, 26, 55-62. https://doi.org/10.1016/j.sbspro.2011.10.562.
Zobal, V. (2017). Sentiment analysis of social media and its relation to stock mar-ket (Bachelor's thesis). Prague: Charles University, Faculty of Social Sciences, Institute of Economic Studies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joanna Michalak

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 97
Number of citations: 0