Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Journal Information
  • Current
  • Archives
  • Editorial Team
  • Fees
  • Ethics and Policies
  • Submission
  • Register
  • Login

Ekonomia i Prawo. Economics and Law

Predictive strength of Macroeconomic Imbalance Procedure indicators
  • Home
  • /
  • Predictive strength of Macroeconomic Imbalance Procedure indicators
  1. Home /
  2. Archives /
  3. Vol. 23 No. 1 (2024) /
  4. Articles

Predictive strength of Macroeconomic Imbalance Procedure indicators

Authors

  • Krzysztof Biegun Wroclaw University of Economics and Business https://orcid.org/0000-0002-4888-6600
  • Martin Dahl Lazarski University in Warsaw https://orcid.org/0000-0003-1978-7045
  • Jacek Karwowski Wroclaw University of Economics and Business https://orcid.org/0000-0003-2754-5003

DOI:

https://doi.org/10.12775/EiP.2024.002

Keywords

macroeconomic imbalance procedure, MIP, crisis forecasting, European semester, economic policy

Abstract

Motivation: The Macroeconomic Imbalance Procedure (MIP) is a key step in the European Semester, aimed at the coordination of the economic policies of the EU Member States to prevent excessive macroeconomic imbalances in the EU and support structural reforms. The MIP was originally envisaged as a legal tool for crisis prevention, allowing macroeconomic imbalances to be detected and then remedied, but is also used as an Early Warning System. However, the real strength of MIP indicators to predict crises has not been proved in practice and is widely contested in the literature.
Aim: Fourteen scoreboard (“main”) and 28 auxiliary MIP indicators are currently in use. This paper is aimed at the assessment of the power of all MIP indicators in predicting crises.
Results: The added value of our research is to test the MIP’s ability to predict changes in GDP, which may be considered as a proxy for the deterioration or improvement of the economic situation. Very little investigation has been done in this area so far. In addition, to our knowledge, no research papers have investigated the relevance of auxiliary MIP indicators. Our results show that only four main indicators (house price index, nominal unit labour cost index, general government sector debt, and export market shares) and another four auxiliary indicators (residential construction as percentage of GDP, activity rate, people living in households with very low work intensity, and export performance against advanced economies) seem to be able to predict the upcoming crises.

References

Beck, K. (2017). Bayesian model averaging and jointness measures: theoretical framework and application to the gravity model of trade. Statistics in Transition New Series, 18(3), 393–412. https://doi.org/10.21307/stattrans-2016-077.

Beck, K. (2019). What drives business cycle synchronization: BMA results from the European Union. Baltic Journal of Economics, 19(2), 248–275. https://doi.org/10.1080/1406099X.2019.1652393.

Beck, K. (2020). Migration and business cycles: testing the OCA theory predictions in the European Union. Applied Economics Letters, 28(13), 1087–1091. https://doi.org/10.1080/13504851.2020.1798339.

Beck, K. (2021). Capital mobility and the synchronization of business cycles: evidence from the European Union. Review of International Economics, 29(4), 1065–1079. https://doi.org/10.1111/roie.12536.

Bergman, U.M., Hutchison, M.M., & Jensen, S.E.H. (2016). Promoting sustainable public finances in the European Union: the role of fiscal rules and government efficiency. European Journal of Political Economy, 44, 1–19. https://doi.org/10.1016/j.ejpoleco.2016.04.005.

Biegun, K., & Karwowski, J. (2020). Macroeconomic imbalance procedure (MIP) scoreboard indicators and their predictive strength of “multidimensional crises”. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(1), 11–28. https://doi.org/10.24136/EQ.2020.001.

Borio, C., & Drehmann, M. (2009). Assessing the risk of banking crises: revisited. BIS Quaterly Review, March, 29–46.

Boysen-Hogrefe, J., Jannsen, N., Plödt, M., & Schwarzmüller, T. (2015). An empirical evaluation of macroeconomic surveillance in the European Union. Kiel Working Paper, 2014, 1–33.

Casagrande, S., & Dallago, B. (2021). Socio-economic and political challenges of EU member countries: grasping the policy direction of the European semester. Comparative Economic Studies, 64, 487–519. https://doi.org/10.1057/s41294-021-00171-2.

Council of the EU. (2016). Council conclusions on Alert Mechanism Report 2016. Retrieved 27.06.2023 from https://www.consilium.europa.eu/en/press/press-releases/2016/01/15/conclusions-on-alert-mechanism-report-2016.

Csortos, O., & Szalai, Z. (2014). Early warning indicators: financial and macroeconomic imbalances in Central and Eastern European countries. MNB Working Papers, 2, 1–35.

Dany-Knedlik, G., Kämpfe, M., & Knedlik, T. (2021). The appropriateness of the macroeconomic imbalance procedure for Central and Eastern European Countries. Empirica, 48, 123–139. https://doi.org/10.1007/s10663-020-09471-9.

Domonkos, T., Ostrihoň, F., Šikulová, I., & Širaňová, M. (2017). Analysing the relevance of the MIP scoreboard’s indicators. National Institute Economic Review, 239, R32–R52. https://doi.org/10.1177/002795011723900112.

Doppelhofer, G., & Weeks, M. (2009). Jointness of growth determinants. Journal of Applied Econometrics, 24(2), 209–244. https://doi.org/10.1002/jae.1046.

Eicher, T., Papageorgiou, C., & Raftery, A.E. (2011). Determining growth determinants: default priors and predictive performance in Bayesian model averaging. Journal of Applied Econometrics, 26(1), 30–55. https://doi.org/10.1002/jae.1112.

Erhart, S., Becker, W., & Saisana, M. (2018). The macroeconomic imbalance procedure: from the scoreboard and thresholds to the decisions. https://doi.org/10.2760/038148.

Eurostat. (2023a). Macroeconomic imbalance procedure: indicators. Retrieved 27.06.2023 from https://ec.europa.eu/eurostat/web/macroeconomic-imbalances-procedure/indicators.

Eurostat. (2023b). Macroeconomic imbalance procedure: statistical annex indicators. Retrieved 27.06.2023 from https://ec.europa.eu/eurostat/cache/metadata/en/mips_sa_esms.htm.

Fernández, C., Ley, E., & Steel, M. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100(2), 381–427. https://doi.org/10.1016/s0304-4076(00)00076-2.

Foster, D., & George, E. (1994). The risk inflation criterion for multiple regression. The Annals of Statistics, 22(4), 1947–1975. https://doi.org/10.1214/aos/1176325766.

George, E. (2010). Dilution priors: compensating for model space redundancy. In J.O. Berger, T.T. Cai, & I.M. Johnstone (Eds.), Borrowing strength: theory powering applications: a festschrift for Lawrence D. Brown (pp. 185–165). Institute of Mathematical Statistics. https://doi.org/10.1214/10-IMSCOLL611.

Geršl, A., & Jašová, M. (2018). Credit-based early warning indicators of banking crises in emerging markets. Economic Systems, 42(1), 18–31. https://doi.org/10.1016/j.ecosys.2017.05.004.

Hallerberg, M., Strauch, R., & von Hagen, J. (2007). The design of fiscal rules and forms of governance in European Union countries. European Journal of Political Economy, 23(2), 338–359. https://doi.org/10.1016/j.ejpoleco.2006.11.005.

Hansen, R.M., & Lovering I.A. (2022). Balancing EU social and economic governance through performance management. Contemporary Politics, 19(1), 22–42. https://doi.org/10.1080/13569775.2022.2044604.

Hoeting, J., Madigan, D., Raftery, A., & Volinsky, C. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14(4), 382–417.

https://doi.org/10.1214/ss/1009212814.

Ioannou, D., & Stracca, L. (2014). Have the euro area and EU governance worked: just the facts. European Journal of Political Economy, 34, 1–17. https://doi.org/10.1016/j.ejpoleco.2013.11.009.

Kaminsky, G. (1998). Currency and banking crises: the early warnings of distress. IMF Working Papers, 178, 1–38.

Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572.

Kass, R., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90(431), 928–934. https://doi.org/10.1080/01621459.1995.10476592.

Knedlik, T. (2014). The impact of preferences on early warning systems: the case of the European Commission’s scoreboard. European Journal of Political Economy, 34, 157–166. https://doi.org/10.1016/j.ejpoleco.2014.01.008.

Koll, W., & Watt, A. (2022). The macroeconomic imbalance procedure at the heart of EU economic governance reform. Intereconomics, 57(1), 56–62. https://doi.org/10.1007/s10272-022-1028-7.

Ley, E., & Steel, M. (2009). On the effect of prior assumptions in Bayesian model averaging with applications to growth regressions. Journal of Applied Econometrics, 24(4), 651–674. https://doi.org/10.1002/jae.1057.

Ley, E., & Steel, M. (2012). Mixtures of g-priors for Bayesian model averaging with economic applications. Journal of Econometrics, 171(2), 251–266. https://doi.org/10.1016/j.jeconom.2012.06.009.

Madigan, D., York, J., & Allard, D. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63(2), 215–23. https://doi.org/10.2307/1403615.

Mishkin, F.S. (2011a). Monetary policy strategy: lessons from the crisis. NBER Working Paper, 16755, 1–62.

Mishkin, F.S. (2011b). Over the cliff: from the subprime to the global financial crisis. Journal of Economic Perspectives, 25(1), 49–70.

https://doi.org/10.1257/jep.25.1.49.

Pierluigi, B., & Sondermann, D. (2018). Macroeconomic imbalances in the euro area: where do we stand. ECB Occasional Paper Series, 211, 1–53. https://doi.org/10.2866/524051.

Sala-i-Martin, X., Doppelhofer, G., & Miller, R. (2004). Determinants of long-term growth: a Bayesian averaging of classical estimates (BACE) approach. American Economic Review, 94(4), 813–835. https://doi.org/10.1257/0002828042002570.

Siranova, M., & Radvanský, M. (2018). Performance of the macroeconomic imbalance procedure in light of historical experience in the CEE region. Journal of Economic Policy Reform, 21(4), 335–352 https://doi.org/0.1080/17487870.2017.1364642.

Sohn, B., & Park, H. (2016). Early warning indicators of banking crisis and bank related stock returns. Finance Research Letters, 18, 193–198. https://doi.org/10.1016/j.frl.2016.04.016.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g prior distributions. In P.K. Goel, & A. Zellner (Eds.), Bayesian inference and decision techniques: essays in honor of Bruno de Finetti (pp. 233–243). Elsevier.

Ekonomia i Prawo. Economics and Law

Downloads

  • PDF

Published

2024-03-31

How to Cite

1.
BIEGUN, Krzysztof, DAHL, Martin and KARWOWSKI, Jacek. Predictive strength of Macroeconomic Imbalance Procedure indicators. Ekonomia i Prawo. Economics and Law. Online. 31 March 2024. Vol. 23, no. 1, pp. 23-45. [Accessed 5 July 2025]. DOI 10.12775/EiP.2024.002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 No. 1 (2024)

Section

Articles

License

Copyright (c) 2023 Krzysztof Biegun, Martin Dahl, Jacek Karwowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 323
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

Information

  • For Readers
  • For Authors
  • For Librarians

User

User

Contact

Principal Contact
Piotr Wiśniewski
psw@umk.pl
Support Contact
Grzegorz Kopcewicz
Phone (56) 611 26 93
greg@umk.pl

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie
Ekonomia i Prawo. Economics and Law
Katedra Ekonomii 
Wydział Nauk Ekonomicznych i Zarządzania 
Uniwersytet Mikołaja Kopernika w Toruniu 
ul. Gagarina 13A 
87-100 Toruń

Principal Contact

Piotr Wiśniewski
psw@umk.pl

Support Contact

Grzegorz Kopcewicz
Phone (56) 611 26 93
greg@umk.pl

© 2021- Nicolaus Copernicus University Accessibility statement Shop