Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Journal Information
  • Current
  • Archives
  • Editorial Team
  • Fees
  • Ethics and Policies
  • Submission
  • Register
  • Login

Ekonomia i Prawo. Economics and Law

Better understanding of the labour market using Big Data
  • Home
  • /
  • Better understanding of the labour market using Big Data
  1. Home /
  2. Archives /
  3. Vol. 20 No. 3 (2021) /
  4. Articles

Better understanding of the labour market using Big Data

Authors

  • Alena Vankevich Vitebsk State Technological University https://orcid.org/0000-0001-8064-8250
  • Iryna Kalinouskaya Vitebsk State Technological University https://orcid.org/0000-0002-6622-2875

DOI:

https://doi.org/10.12775/EiP.2021.040

Keywords

labour market, skills, competencies, Big Data, open-job portals

Abstract

Motivation: As the result of digitalisation of the economy, the number of Internet users is increasing, which leads to an increase in the number of vacancies posted on online platforms and services. The description of vacancies includes information about skills and competencies, which is the source of additional data for the labour market analysis. This information cannot be received through the analysis of statistical and administrative data. Therefore, it is important: — to learn how to evaluate new information sources, and use the data they generate; — to develop tools that people and organizations will use for finding an employee or a vacant post. The study focuses on the analysis and forecast of labour demand in the context of skills and competencies, which significantly enriches and adds to the information about the labour market and facilitates effective decision-making.

Aim: The main goals of this article are the following: (1) identification of the methodological approaches in the labour market analyses using Big Data; (2) assessment of the labour demand and labour supply in the context of skills and competencies listed in the vacancy description posted on job portals; and (3) determination of the matches (mismatches) between skills and competencies in order to help the companies and individuals get better employment and education. Empirical data used in the research were collected from the description of job vacancies (16 401 vacancies) and CVs (227 215 CVs) from the most popular open job portals in Belarus through the scraping approach and classified according to the ESCO and ISCO codes. Quantitative analysis by the means of artificial intelligence was used in the research.

Results: The study results revealed that the information about the volume and structure of skills and competencies obtained by scraping data from vacancy descriptions and Cvs, which are posted on online portals, allows for more precise diagnostics of labour demand and supply and overcoming of bilateral information asymmetry in the labour market. Based on the analysis, the parameters of scarcity and excess in competencies for individual occupations in the labour market are determined (the level of the correlation ratio between applicants’ competencies and those requested by employers in the context of occupations (four digits according to the ISCO classification) is less 0.8; the deviation of the ranks of competencies listed in CVs and vacancy descriptions according to the ESCO groups of skills/competencies and a sign of revealed deviations). The methodology is developed to set areas for necessary knowledge acquisition (by the analysis of competencies listed in CVs and vacancy descriptions at the 3rd and 4th digit level of ISCED classification) and skills (by the analysis of competencies at the 2nd digit level in ESCO groups). The paper illustrates limitations in using Big Data as an empirical database and explains the measures to eliminate those limitations.

References

Bejger, S., & Elster, S. (2020). Artificial Intelligence in economic decision making: how to assure a trust? Ekonomia i prawo. Economics and Law, 19(3), 411–434. https://doi.org/10.12775/EiP.2020.028.

Borjas, G.J. (2015). Labor economics (7th ed.). McGraw–Hill Education.

CEDEFOP. (2019a). Online job vacancies and skills analysis: a CEDEFOP pan-European approach. https://doi.org/10.2801/097022.

CEDEFOP. (2019b). The online job vacancy market in the EU: driving forces and emerging trends. CEDEFOP Research Paper, 72, 1–96. http://data.europa.eu/doi/10.2801/16675.

Horton, J.J., & Tambe, P. (2015). Labor economists get their microscope: big data and labor market analysis. Big Data, 3(3), 130–137. https://doi.org/10.1089/big.2015.0017.

ILO. (2020). The feasibility of using big data in anticipating and matching skills needs. Retrieved 04.11.2021 from https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---emp_ent/documents/publication/wcms_759330.pdf.

Kureková, L.M., Beblavý, M., & Thum-Thysen, A. (2015). Using online vacancies and web surveys to analyse the labour market: a methodological inquiry. IZA Journal of Labor Economics, 4, 18. https://doi.org/10.1186/s40172-015-0034-4.

Makovskaya, N. (2020). Modern features of the labor market functioning in belarus. Monograph. A.A. Kuleshov Mogilev State University. Retrieved 04.11.2021 from https://libr.msu.by/bitstream/123456789/12909/1/3345n.pdf.

Mezzanzanica, M., & Mercorio, F. (2019). Big data for labour market information: an introductory guide. Retrieved 04.11.2021 from https://www.etf.europa.eu/sites/default/files/2019-06/Big%20data%20for%20LMI.pdf.

Oyer, P., & Schaefer, S. (2011). Personnel economics: hiring and incentives. In D. Card D., & Ashenfelter, O. (Eds.), Handbook of labor economics, 4B, 1769–1823. https://doi.org/10.1016/S0169-7218(11)02418-X.

Roshchin, S.Y., & Solntsev, S.A. (2017). How companies search employees: empirical evidence from Russian companies. Russian Management Journal, 15(2), 173–192. https://doi.org/10.21638/11701/spbu18.2017.203.

UK Commission for Employment and Skills. (2014). Information to local intelligence: guidance on local labour market assessments. Retrieved 04.11.2021 from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/346923/Local_LMI_Guidance_Aug14_FINAL_with_covers_v3.pdf.

Vankevich, A., & Kalinouskaya, I. (2020). Artificial Intelligence technologies in human resource management. Belarusian Economic Journal, 2(91), 38–51. https://doi.org/10.46782/1818-4510-2020-2-38-51.

Vankevich, A., & Castel-Branco, E. (2017). Information-analytical system of the labour market and forecasting of demand for personnel: content and directions of formation in the Republic of Belarus. Belarusian Economic Journal, 2(79), 73–92.

Vasiliev, D.S., Roshin, S.Y., Solntsev, S.A. (2016). Evolution of job search technologies in the labor market in the internet age. National Research University Higher School of Economics. Retrieved 04.11.2021 from https://wp.hse.ru/data/2016/05/11/1129129931/WP15_2016_02____.pdf.

World Economic Forum. (2018). Towards a reskilling revolution: a future of jobs for all. Retrieved 04.11.2021 from https://www3.weforum.org/docs/WEF_FOW_Reskilling_Revolution.pdf.

Ekonomia i Prawo. Economics and Law

Downloads

  • PDF

Published

2021-09-30

How to Cite

1.
VANKEVICH, Alena and KALINOUSKAYA, Iryna. Better understanding of the labour market using Big Data. Ekonomia i Prawo. Economics and Law. Online. 30 September 2021. Vol. 20, no. 3, pp. 677-692. [Accessed 3 July 2025]. DOI 10.12775/EiP.2021.040.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 20 No. 3 (2021)

Section

Articles

License

Copyright (c) 2022 Alena Vankevich, Iryna Kalinouskaya

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1486
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

Information

  • For Readers
  • For Authors
  • For Librarians

User

User

Contact

Principal Contact
Piotr Wiśniewski
psw@umk.pl
Support Contact
Grzegorz Kopcewicz
Phone (56) 611 26 93
greg@umk.pl

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie
Ekonomia i Prawo. Economics and Law
Katedra Ekonomii 
Wydział Nauk Ekonomicznych i Zarządzania 
Uniwersytet Mikołaja Kopernika w Toruniu 
ul. Gagarina 13A 
87-100 Toruń

Principal Contact

Piotr Wiśniewski
psw@umk.pl

Support Contact

Grzegorz Kopcewicz
Phone (56) 611 26 93
greg@umk.pl

© 2021- Nicolaus Copernicus University Accessibility statement Shop