Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
  • Registrarse
  • Entrar
  • Language
    • English
    • Deutsch
    • Język Polski
    • Español (España)
    • Italiano
    • Français (Canada)
    • Čeština
    • Français (France)
    • Hrvatski
    • Srpski
    • Українська
  • Menu
  • Inicio
  • Forthcoming
  • Actual
  • Archivos
  • Ethics
  • Avisos
  • Acerca de
    • Sobre la revista
    • Envíos
    • Equipo editorial
    • Declaración de privacidad
    • Contacto
  • Registrarse
  • Entrar
  • Language:
  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Copernican Journal of Finance & Accounting

Effectiveness of Open, High and Low Prices in Stock Market Price Prediction
  • Inicio
  • /
  • Effectiveness of Open, High and Low Prices in Stock Market Price Prediction
  1. Inicio /
  2. Archivos /
  3. Vol. 13 Núm. 4 (2024) /
  4. Articles

Effectiveness of Open, High and Low Prices in Stock Market Price Prediction

Autores/as

  • Collins C. Ngwakwe University of Limpopo https://orcid.org/0000-0002-6954-8897

DOI:

https://doi.org/10.12775/CJFA.2024.018

Palabras clave

stock price, market price, stock markets, price prediction, portfolio investment

Resumen

Stock market price prediction is vital for investment decision amid difficulties with effective price predictions. The paper aims to analyse the rate of effectiveness in actual stock market price prediction using the open, high and low prices. The paper draws insight from diverse prior research with assorted models such as Markov Chain, time series and computer aided stock price prediction. The paper’s approach is quantitative with forty-three days stock market price data from S&P500 and Shanghai Composite Index. Data was analysed with the regression statistics. Results show that the open, high and low prices can significantly predict the actual market price at probability level of P<0.0001 for both the S&P500 Index and the Shanghai Composite Index. Prediction rates exceed 70% for S&P500 and over 80% for Shanghai Composite Index. The model was verified by using data other observation periods (during the COVID-19 and during the financial crisis). The implication therefore is that in the absence of other expensive market information, an average investor may use the open, high and low prices to make a useful prediction of actual stock market price. The findings present a useful case reading for academics in business schools and offer an agender for future research to apply this model in other stock markets. The paper offers a novel value from the finding by demonstrating that the showing that application of open, high and low prices with regression may give a prediction accuracy rate of over eighty percent, which is higher than reported seventy percent prediction rate in prior work that used other models.

Citas

Abbas, G., & Wang, S. (2020). Does macroeconomic uncertainty really matter in predicting stock market behavior? A comparative study on China and USA. China Finance Review International, 10(4), 393–427. https://doi.org/10.1108/CFRI-06-2019-0077.

Al-Nefaie, A.H., & Aldhyani, T.H. (2022). Predicting close price in emerging Saudi Stock Exchange: time series models. Electronics, 11(21). https://doi.org/10.3390/electronics11213443.

Billah, M., Waheed, S., & Hanifa, A. (2015). Predicting closing stock price using artificial neural network and adaptive neuro fuzzy inference system (ANFIS): the case of the dhaka stock exchange. International Journal of Computer Applications, 129(11), 1–5. https://doi.org/10.5120/ijca2015906952.

Combes, C., & Dussauchoy, A. (2006). Generalized extreme value distribution for fitting opening/closing asset prices and returns in stock-exchange. Operational Research, 6, 3–26. https://doi.org/10.1007/BF02941135.

da Silva, P.P. (2021). Do managers pay attention to the market? A review of the relationship between stock price informativeness and investment. Journal of Multinational Financial Management, 59, 100675. http://dx.doi.org/10.2139/ssrn.3244469.

Ellul, A., Shin, H. S., & Tonks, I. (2005). Opening and closing the market: Evidence from the London Stock Exchange. Journal of Financial and Quantitative Analysis, 40(4), 779–801. https://doi.org/10.1017/S0022109000001976.

Emeka-Nwokeji, N.A., Nangih, E., Chiedu, C.O., & Ekwunife, E.N. (2022). Reaction of Share Prices to Dividend Policy of Non-Financial Firms in Nigeria: a Panel Data Approach. Copernican Journal of Finance & Accounting, 11(2), 31–49. https://doi.org/10.12775/CJFA.2022.007.

Enow, S.T. (2022). Modelling Stock Market Prices Using the Open, High and Closes Prices. Evidence from International Financial Markets. International Journal of Business and Economic Sciences Applied Research (IJBESAR), 15(3), 52–59. https://doi.org/10.25103/ijbesar.153.04.

Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. Journal of Business & Economic Statistics, 19(2), 177–191. https://doi.org/10.1198/073500101316970403.

Ilyas, Q.M., Iqbal, K., Ijaz, S., Mehmood, A., & Bhatia, S. (2022). A hybrid model to predict stock closing price using novel features and a fully modified hodrick–Prescott filter. Electronics, 11(21), 3588. https://doi.org/10.3390/electronics11213588.

Malibari, N., Katib, I., & Mehmood, R. (2021). Predicting stock closing prices in emerging markets with transformer neural networks: The saudi stock exchange case. International Journal of Advanced Computer Science and Applications, 12(12), 876–886. https://doi.org/10.14569/IJACSA.2021.01212106.

Öz, E. (2009). An estimation by hidden markov model for the Istanbul stock exchange. Gazi University Journal of Economic Approach, 20(72), 59–85. https://doi.org/10.5455/ey.10692.

Park, Y.S., Konge, L., & Artino Jr, A.R. (2020). The positivism paradigm of research. Academic medicine, 95(5), 690–694. https://doi.org/10.1097/ACM.0000000000003093.

Ringmu, H.S., & Oumar, S.B. (2022). Forecasting stock prices in the New York stock exchange. Journal of Economics Bibliography, 9(1), 1–20. https://doi.org/10.1453/jeb.v9i1.2269.

Yavuz, M. (2019). A Markov chain analysis for BIST participation index. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 1–8. https://doi.org/10.25092/baunfbed.433310.

Copernican Journal of Finance & Accounting

Descargas

  • PDF (English)

Publicado

2025-03-07

Cómo citar

1.
NGWAKWE, Collins C. Effectiveness of Open, High and Low Prices in Stock Market Price Prediction. Copernican Journal of Finance & Accounting. Online. 7 marzo 2025. Vol. 13, no. 4, pp. 77-93. [Accessed 16 diciembre 2025]. DOI 10.12775/CJFA.2024.018.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Descargar cita
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Número

Vol. 13 Núm. 4 (2024)

Sección

Articles

Licencia

Derechos de autor 2025 Collins C. Ngwakwe

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.

Stats

Number of views and downloads: 282
Number of citations: 0

Search

Search

Browse

  • Examinar índice de autores/as
  • Issue archive

User

User

Número actual

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Información

  • Para lectores/as
  • Para autores/as
  • Para bibliotecarios/as

Newsletter

Subscribe Unsubscribe

Idioma

  • English
  • Deutsch
  • Język Polski
  • Español (España)
  • Italiano
  • Français (Canada)
  • Čeština
  • Français (France)
  • Hrvatski
  • Srpski
  • Українська

Tags

Search using one of provided tags:

stock price, market price, stock markets, price prediction, portfolio investment

cross_check

The journal content is indexed in CrossCheck, the CrossRef initiative to prevent scholarly and professional plagiarism

Arriba

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop