Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Thermal regime of lakes in the Polish Lowlands in the light of climate change
  • Home
  • /
  • Thermal regime of lakes in the Polish Lowlands in the light of climate change
  1. Home /
  2. Archives /
  3. No. 29 (2025) /
  4. Articles

Thermal regime of lakes in the Polish Lowlands in the light of climate change

Authors

  • Rajmund Skowron Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Managment, Poland (retired Professor) https://orcid.org/0000-0001-7411-5239
  • Tomasz Jaszczyk University of Toronto, Faculty of Chemical and Physical Sciences, ON, Canada

DOI:

https://doi.org/10.12775/bgeo-2025-0014

Keywords

lake, water temperature, ice phenomena, Poland

Abstract

Based on data on surface water temperature, summer thermal structure and ice phenomena in lakes in northern Poland for the years 1961-2020, changes in their thermal regime during the period of climate change were determined. The average annual surface water temperatures in all lakes (13 lakes) were characterized by an average positive trend at the level of 0.044oC·year-1 with 0.015 oC·year-1 in January and 0.069 oC·year-1  in May. In turn, in the summer (from 20 July to 20 August), the average water temperature within the epilimnion (to a depth of 5 m) was characterized by a positive trend at the level of 0.05–0.07 oC·year-1, while below this layer a negative trend was noted in all lakes. A characteristic feature observed in all lakes was a decrease in the thickness of the epilimnion with a trend at the level of 0.07–0.11 m·year-1. The hypolimnion layer showed a negative trend for its water temperature, which ranged from 0.02oC·year-1  (Raduńskie Górne) to 0.07oC·year-1  (Miedwie). The ice cover appeared on average in the middle of the third decade of December and its trend was characterized by negative values ​​(0.1-0.2 days∙year-1). In turn, the dates of its disappearance were recorded earlier and earlier, most often in the second decade of March. The consequence of the initial and final dates with ice cover is the length of its occurrence, which was shortened on average by 0.7-0.8 days∙year-1. The general trend of shortening the period with ice cover was also accompanied by a clear decrease in its thickness (with a trend of (0.2-0.4 cm∙year-1).

References

ADRIAN R, O’REILLY CM, ZAGARESE H, BAINES SB, HESSEN DO, KELLER W, LIVINGSTONE DM, RUBEN SOMMARUGA R, STRAILE D, VAN DONK E, WEYHENMEYER GA and WINDER M, 2009, Lakes as sentinels of climate change. Limnology and Oceanography 54(6, part 2): 2283–2297. DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283.

AMBROSETTI W and BARBANTI L, 1999, Deep water warming in lakes: an indicator of climate change. Journal of Limnology 58(1): 1–9. DOI: https://doi.org/10.4081/jlimnol.1999.1.

APSĪTE E, ELFERTS D, ZUBANIČS A and LATKOVSKA I, 2014, Long-term changes in hydrological regime of the lakes in Latvia. Hydrology Research 45(3): 308-321. DOI: https://doi.org/10.2166/nh.2013.216.

ARVOLA L, GEORGE G, LIVINGSTONE DM, JÄRVINEN M, BLENCKNER T, DOKULIL MT, JENNINGS E, AONGHUSA CN, NÕGES P, NÕGES T and WEYHENMEYER GA, 2010, The Impact of the Changing Climate on the Thermal Characteristics of Lakes. In: George DG (ed.) The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4: 85–101. DOI: https://doi.org/10.1007/978-90-481-2945-4_6.

AUSTIN J and COLMAN S, 2008, A century of temperature variability in Lake Superior. Limnology and Oceanography 53(6): 2724–2730. DOI: https://doi.org/10.4319/lo.2008.53.6.2724.

BARTOSIEWICZ M, PTAK M, WOOLWAY RI and SOJKA M, 2021, On thinning ice: Effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). Journal of Hydrology 597: 126174. DOI: https://doi.org/10.1016/j.jhydrol.2021.126174.

BIJAK S, 2005, Wahania temperatury powietrza w Warszawie i Tallinie w latach 1779–2000. In: Bogdanowicz E, Kossowska-Cezak U, Szkutnicki J (eds.) Ekstremalne zjawiska hydrologiczne i meteorologiczne. Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej, Warszawa: 81–88.

BLENCKNER T, 2001, Climate related impacts on a lake: From Physics to Biology. Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 674: 1–37.

BOROWIAK D, BARAŃCZUK J and NOWIŃSKI K, 2008, Tranformations of thermal stratification in Upper Raduńskie Lake. In: Bajkiewicz-Grabowska E, Borowiak D (eds.) Antropogenic and natural transformations of lakes. Gdańsk, 2: 23–26.

BORYCZKA J, 2004, Mit efektu cieplarnianego (The greenhouse effect myth – in Polish). Przegląd Geofizyczny 49(1-2): 43–56.

BUKANTIS A, GEUBINAS Z, KAZAKEVICIUS S, KILKUS K, MIKELINSKIENE A, MOKRUNAITE R, RIMKUS E, SAMULA M, STANKUNAVICIUS G, VALIUSKEVICIUS G and ŻAROMSKIS R, 2001, Klimato svyraminu poveikis fiziniams geografiniams procesams Lietuvoje (The influence of climatic variations on physical geographical processes in Lithuania – in Lithuanian). Geografijos Institutas, Vilniaus Universitetas, Vilnius.

CHOIŃSKI A, 2007, Limnologia fizyczna Polski (Physical Limnology of Poland – in Polish). Wydawnictwo Naukowe UAM, Poznań.

CHOIŃSKI A, PTAK M and SKOWRON R, 2014, Tendencje zmian zjawisk lodowych jezior północnej Polski w latach 1951-2010 (Tendencies of changes in ice phenomena in the northern of Polish lakes in the years 1951-2010 – in Polish). Przegląd Geograficzny 86(1): 5–22. DOI: https://doi.org/10.7163/PrzG.2014.1.1.

CHOJNOWSKI S, 1972, Wstępna charakterystyka zjawisk termicznych w jeziorach konińskich (Preliminary characteristics of thermal phenomena in the Konin lakes – in Polish). Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego 107: 99–118.

CZARNECKA M and NIDZGORSKA-LENCEWICZ J, 2017, Regiony termicznej zimy w Polsce (Regions of thermal winter in Poland – in Polish). Przegląd Geograficzny 89(3): 377-389. DOI: https://doi.org/10.7163/PrzG.2017.3.2.

CZERNECKI B and MIĘTUS M, 2011, Porównanie stosowanych klasyfikacji termicznych na przykładzie wybranych regionów Polski (Comparison of thermal classification for selected regions of Poland – in Polish). Przegląd Geofizyczny 56(3-4): 201-233.

DANILOVISH I, 2005, Influence of climate warming on hydrological regime of lakes and reservoirs in Belarus. In: Jankowski AT, Rzętała M (eds.) Lakes and artificial water reservoirs – natural processes and socio-economic Importance. University of Silesia-Faculty of Earth Sciences, Polish Limnological Society, Sosnowiec: 53-58.

DĄBROWSKI M, MARSZELEWSKI W and SKOWRON R, 2004, The trends and dependencies between air and water temperatures in the lakes located in Northern Poland in the years 1961–2000. Hydrology and Earth System Sciences 8(1): 79–87. DOI: https://doi.org/10.5194/hess-8-79-2004.

DEGIRMENDŽIĆ J, KOŻUCHOWSKI K and MARCINIAK K, 2000, Zmiany temperatury powietrza i opadów atmosferycznych w Polsce między dekadami 1959–1968 i 1989–1998 na tle warunków cyrkulacyjnych (Changes in air temperature and precipitation in Poland between the decades 1959–1968 and 1989–1998 against the background of circulation conditions – in Polish). Acta Universitatis Nicolai Copernici, Geografia 31(106): 91–110.

DEGIRMENDŽIĆ J, KOŻUCHOWSKI K and ŻMUDZKA E, 2002, Uwarunkowania cyrkulacyjne zmienności temperatury powietrza w Polsce w okresie 1951–2000 (Circulation conditions of air temperature variability in Poland in the period 1951–2000 – in Polish). Przegląd Geofizyczny 47(1–2): 93–98.

DOKULIL MT, 2013, Impact of climate warming on European inland waters. Inland Waters 4(1): 27-40. DOI: https://doi.org/10.5268/IW-4.1.705.

DUGUAY CR, PROWSE TD, BONSAL BR, BROWN RD, LACROIX MP and MÉNARD PM, 2006, Recent trends in Canadian lake ice cover. Hydrological Processes 20(4): 781–801. DOI: https://doi.org/10.1002/hyp.6131.

ENDOH S, FUKUYAMA N, TSUJIMOTO Y, YAMASHITA S, ONISHI Y, KAWAKAMI M, NAKAMURA N, BAMBA R, TANAKA S, MAKABE N, TANAKA Y and KAWASHIMA M, 2001, Recent Warming and Water Exchange in Lake Biwa. 9th International Conference on the Conservation and Management of Lakes, Otsu, Session 5A: 21–24.

FILATOV N, NAZAROVA L and SALO Y, 2003, Climate changes and water resources in the region of the largest European lakes. In: Simola H, Terzhevik A, Viljanen M, Holopainen I (eds.) Proceedings of the Fourth International Lake Ladoga Symposium. Joensuu, 138: 31–36.

FORTUNIAK K, KOŻUCHOWSKI K and ŻMUDZKA E, 2001, Trendy i okresowość temperatury powietrza w Polsce w drugiej połowie XX wieku (Trends, and periodicity of changes in air temperature in Poland in the second half of 20th century – in Polish). Przegląd Geofizyczny 46(4): 283–303.

GEORGE DG, HURLEY MA and HEWITT DP, 2007, The impact of climate change on the physical characteristics of the larger lakes in the English Lake District. Freshwater Biology 52(9): 1647–1666. DOI: https://doi.org/10.1111/j.1365-2427.2007.01795.x.

GRONSKAYA TP, GEORGE DG and ARVOLA L, 2001, The influence of long-term changes in the weather on the thermal characteristics of lakes in the UK, Finland and Russia. 9th International Conference on the Conservation and Management of Lakes, Conference Proceedings, Session 5A-P04, Otsu: 43–47.

HURRELL JW, 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224): 676–679. DOI: https://doi.org/10.1126/science.269.5224.676.

JÄRVET A, 2001, Climatological calender of lakes in Estonia and its long-term changes. 9th International Conference on the Conservation and Management of Lakes, Conference Proceedings, Session 5A–P06, Otsu: 51–54.

JÄRVET A, 2002, Climatological calendar of Estonian lakes and its long-term changes. Nordic Hydrological Programme Report No. 47(2): 677–687.

JONES PD, JONSSON T and WHEELER D, 1997, Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. International Journal of Climatology 17(13): 1433-1450. DOI: https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

KANGUR K, GINTER K, KANGUR P, KANGUR A, NÕGES P and LAAS A, 2016, Changes in water temperature and chemistry preceding a massive kill of bottom-dwelling fish: an analysis of high-frequency buoy data of shallow Lake Võrtsjärv (Estonia). Inland Waters 6(4): 535-542. DOI: https://doi.org/10.5268/IW-6.4.869.

KANIECKI A, 1997, Wpływ XIX-wiecznych melioracji na zmiany poziomu wód (The impact of 19th-century land reclamation on water level changes – in Polish). In: Choiński A (ed.) Wpływ antropopresji na jeziora (The impact of anthropogenic pressure on lakes – in Polish). Wydawnictwo Homini, Poznań-Bydgoszcz: 67-71.

KASZEWSKI BM, 2015, Zmiany klimatu Polski w pracach polskich klimatologów (The changes of climate in Poland in the papers of polish climatologists – in Polish). Przegląd Geofizyczny 60(3-4): 217-235.

KILKUS K and VALIUŠKEVIČIUS G, 2001, Klimato svyravimų atspindţiai eţerų ir upių hidrologiniuose bei hidrofizikiniuose rodikliuose (Reflections of climate fluctuations in the hydrological and hydrophysical indicators of lakes and rivers – in Lithuanian). In: Bukantis A, Gulbinas Z, Kazakevičius S, Kilkus K, Mikelinskienė A, Morkūnaitė R, Rimkus E, Samuila M, Stankūnavičius G, Valiuškevičius G, Ţaromskis R (eds.) Klimato svyravimų poveikis fiziniams geografiniams procesams Lietuvoje (The impact of climate fluctuations on physical geographical processes in Lithuania – in Lithuanian). Geografijos institutas, Vilniaus universitetas, Vilnius: 194–232.

KOŻUCHOWSKI K and ŻMUDZKA E, 2001, Ocieplenie w Polsce: skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku (The warming in Poland: The range and seasonality of the changes in air temperature in the second half of 20th century – in Polish). Przegląd Geofizyczny 46(1-2): 81–90.

KUBIAK J, 2003, Największe dimiktyczne jeziora Pomorza Zachodniego. Poziom trofii, podatność na degradację oraz warunki siedliskowe ichtiofauny (The largest dimictic lakes of Western Pomerania. Trophic level, susceptibility to degradation, and habitat conditions of ichthyofauna – in Polish). Rozprawy 214, Akademia Rolnicza w Szczecinie, Szczecin.

LAMPERT W and SOMMER U, 1996, Ekologia wód śródlądowych (Inland water ecology – in Polish). Wydawnictwo Naukowe PWN, Warszawa: 290.

LANKAUF RK, 2002, Recesja lodowców rejonu Kaffiöyry (Ziemia Oskara II - Spitsbergen) w XX wieku (The retreat of the glaciers in the Kaffiöyra Region (Oscar II Land - Spitsbergen) in the twentieth century – in Polish). Prace Geograficzne 183: 1-124.

LEMESHKO N and BORZENKOVA I, 2001, Hydrological regime of the large Russian freshwater lakes by 2oC global warming. 9th International Conference on the Conservation and Management of Lakes, Conference Proceedings, Session 5A-O04, Otsu: 13–16.

LIVINGSTONE DM and DOKULIL MT, 2001, Eighty years of spatially coherent Austrian lake surface water temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology and Oceanography 46(5): 1220-1227. DOI: https://doi.org/10.4319/lo.2001.46.5.1220.

LIVINGSTONE DM and PADISÁK J, 2007, Large-scale coherence in the response of lake surface-water temperatures to synoptic-scale climate forcing during summer. Limnology and Oceanography 52(2): 896–902. DOI: https://doi.org/10.4319/lo.2007.52.2.0896.

MAGEE MR, WU CH, ROBERTSON DM, LATHROP RC and HAMILTON DP, 2016, Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrology and Earth System Sciences 20(5): 1681–1702. DOI: https://doi.org/10.5194/hess-20-1681-2016.

MAGNUSON JJ, ROBERTSON DM, BENSON BJ, WYNNE RH, LIVINGSTONE DM, ARAI T, ASSEL RA, BARRY RG, CARD V, KUUSISTO E, GRANIN NG, PROWSE TD, STEWARD KM and VUGLINSKI VS, 2000, Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289(5482): 1743–1746. DOI: https://doi.org/10.1126/science.289.5485.1743.

MARSZ A, 1999, Oscylacja Północnoatlantycka a reżim termiczny zim na obszarze Polski Północno-Zachodniej i polskim wybrzeżu Bałtyku (North Atlantic Oscillation and winter thermal regime in northwestern Poland and the Polish Baltic coast – in Polish). Przegląd Geograficzny 71(3): 225-245.

MARSZELEWSKI W and SKOWRON R, 2006, Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrological Sciences Journal 51(2): 336–349. DOI: https://doi.org/10.1623/hysj.51.2.336.

MARSZELEWSKI W and SKOWRON R, 2009, Extreme ice phenomena on the lakes of Northern Poland. Limnological Review 9(2-3): 81-89.

MCCORMICK M and FAHNENSTIEL G, 1999, Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnology and Oceanography 44(3): 530–540. DOI: https://doi.org/10.4319/lo.1999.44.3.0530.

NAUMENKO MA, GUZIVATY VV and KARETNIKOV SG, 2006, Climatic trends of the water surface temperature in Lake Ladoga during ice-free periods. Doklady Earth Sciences 409(5): 675–678. DOI: https://doi.org/10.1134/S1028334X0605003X.

NAUMENKO MA, GUZIVATY VV and KARETNIKOV SG, 2008, Surface temperature climatic trends in Lake Ladoga: do they exist during ice–free period? Limnological Review 8(3): 103–108.

NIEWIAROWSKI W, 1977, Some problems in the evaluation of the natural environment for the demands of tourism and recreation: A case study of the Bydgoszcz Region. Geographia Polonica 34: 241-254.

NÕGES T, TUVIKENE L and NÕGES P, 2010, Contemporary trends of temperature, nutrient loading, and water quality in large Lakes Peipsi and Võrtsjärv, Estonia. Aquatic Ecosystem Health & Management 13(2): 143–153. DOI: https://doi.org/10.1080/14634981003788987.

PASŁAWSKI Z, 1982, Zlodzenie jezior w Polsce (Freezing of lakes in Poland – in Polish). Przegląd Geofizyczny 27(1–2): 79–92.

PEMPAITĖ I, 1997, Paros Vidutinës Oro Temperatûros Pastovios Pereigos Per 0°C Ir 15°C Datos Bei Klimatiniø−Terminiø Sezonø Trukmë Lietuvos Teritorijoje 1961−1990 Metais (Daily Average Air Temperature Constant Transitions Between 0°C and 15°C Dates and Duration of Climatic-Thermal Seasons in Lithuania in 1961–1990 – in Lithuanian). Geografijos Metraštis 30: 154-161.

PERNARAVIČIŪTĖ B, 2004, The impact of climate change on thermal regime of Lithuanian lakes. Ekologija 2: 58–63.

PICCOLROAZ S, ZHU S, PTAK M, SOJKA M and DU X, 2021, Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. Journal of Hydrology: Regional Studies 34: 100781. DOI: https://doi.org/10.1016/j.ejrh.2021.100781.

PIETRUCIEŃ C and SKOWRON R, 1984, Transformacja wód Noteci pod wpływem zanieczyszczeń jeziora Gopło (Transformation of the Noteć River waters under the influence of pollution from Lake Gopło – in Polish). In: Rola badań jeziornych w poznawaniu stosunkow wodnych pojezierzy, Materiały Konferencji Komisji Hydrograficznej PTG (The role of lake research in understanding the water relations of lake districts, Conference Materials of the Hydrographic Commission of the Polish Geographical Society – in Polish) – Sopot 25–27 czerwca. Gdańsk: 186–193.

PIOTROWICZ K, 2002, Metody wydzielenia dat początku i końca termicznych zim na przykładzie krakowskiej serii pomiarów temperatury powietrza (Methods for the determination of the thermal winter beginning and end dates based on the Cracow air temperature records – in Polish). Przegląd Geofizyczny 47(1–2): 81–92.

PRZYBYLAK R, MAJOROWICZ J, WÓJCIK G, ZIELSKI A, CHORĄŻYCZEWSKI W, MARCINIAK K, NOWOSAD W, OLIŃSKI P and SYTA K, 2005, Temperature changes in Poland from the 16th to the 20th centurie. International Journal of Climatology 25(6): 773–791. DOI: https://doi.org/10.1002/joc.1149.

PTAK M and SOJKA M, 2021, The disappearance of ice cover on temperate lakes (Central Europe) as a result of climate warming. Geographical Journal 187(4): 200–213. DOI: https://doi.org/10.1111/geoj.12393.

PTAK M, AMNUAYLOJAROEN T and SOJKA M, 2024a, Seven decades of surface temperature changes in central European lakes. What's next? Resources 13(10): 146. DOI: https://doi.org/10.3390/resources13100146.

PTAK M, AMNUAYLOJAROEN T, HUANG W, WANG L and SOJKA M, 2024c, Role of lake morphometric and environmental drivers of ice cover formation and occurrence on temperate lakes: A case study from the Eastern Baltic Lakeland, Poland. Resources 13(10): 146. DOI: https://doi.org/10.3390/resources13100146.

PTAK M, SOJKA M and NOWAK B, 2020, Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland – Lake Śniardwy. Journal of Hydrology and Hydromechanics 68(3): 260–270. DOI: https://doi.org/10.2478/johh-2020-0024.

PTAK M, SOJKA M, SZYGA-PLUTA K, BALOCH MYJ and AMNUAYLOJAROEN T, 2025, Is Everything Lost? Recreating the surface water temperature of unmonitored lakes in Poland. Resources 14(4): 67. DOI: https://doi.org/10.3390/resources14040067.

PTAK M, ZHU S, AMNUAYLOJAROEN T, LI H, SZYGA-PLUTA K, JIANG S, WANG L and SOJKA M, 2024b, Utilizing multi-source datasets for the reconstruction and prediction of water temperature in Lake Miedwie (Poland). Remote Sensing 16(12): 3030. DOI: https://doi.org/10.3390/rs15123030.

SCHINDLER DW, BEATY KG, FEE EJ, CRUIKSHANK DR, DEBRUYN ER, FINDLAY DL, LINSEY GA, SHEARER JA, STAINTON MP and TURNER MA, 1990, Effects of climatic warming on lakes of the central boreal forest. Science 250(4982): 967-970. DOI: https://doi.org/10.1126/science.250.4982.967.

SCHMID M and KÖSTER O, 2016, Excess warming of a Central European lake driven by solar brightening. Water Resources Research 52(10): 8103–8116. DOI: https://doi.org/10.1002/2016WR018651.

SKOWRON R, 1997, Tendencje zmian temperatury wody powierzchniowej i zjawisk lodowych w jeziorach na obszarach pojeziernych w Polsce (Trends in surface water temperature and ice phenomena in lakes in lake districts in Poland – in Polish). In: Choiński A (ed.) Wpływ antropopresji na jeziora, Materiały Konferencji Naukowej, Poznań (The impact of anthropogenic pressure on lakes, Scientific Conference Materials, Poznań – in Polish) – 2 grudzień 1997. Poznań–Bydgoszcz: 143–151.

SKOWRON R, 1999, Letnia stratyfikacja termiczna wody w jeziorze Hańcza (Summer thermal stratification of water in Lake Hańcza – in Polish). Acta Universitatis Nicolai Copernici, Geografia 29(103): 247-256.

SKOWRON R, 2001, Surface water thermal seasons in polish lakes, their distribution and spatial differentation. Limnological Review 1: 251–263.

SKOWRON R, 2003, Ice sheet in the lakes of the Polish Lowland. Distribution, differences and trends. Limnological Review 3: 205–212.

SKOWRON R, 2006. Differences in thermal and ice regimes formation in lakes Gopło and Bachotek, Limnological Review 6: 255-262

SKOWRON R, 2008, Extreme courses of ice phenomena on the Polish lakes during the last twenty-five years of the Twentieth Century (based on the multiyear mean values). Lakes and artificial reservoirs of Ukraine: current state and anthropogenic changes, Lutsk: 146–151.

SKOWRON R, 2009, Changeability of the ice cover on the lakes of northern Poland in the light of climatic changes. Bulletin of Geography. Physical Geography Series 1: 103–124. DOI: https://doi.org/10.2478/bgeo-2009-0007.

SKOWRON R, 2011, Zróżnicowanie i zmienność wybranych elementów reżimu termicznego w jeziorach na Niżu Polskim (The differentiation and the changeability of chosen of elements the thermal regime of water in lakes on Polish Lowland – in Polish). Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń: 345.

SKOWRON R, 2022, Letnia stratyfikacja termiczna wody w jeziorach na Niżu Polskim (The summer thermal stratification of water in the lakes in the Polish Lowlands). Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń: 330.

SKOWRON R and JASZCZYK T, 2023, Thermal regime of lakes in the southern and eastern part of the Baltic Sea catchment area during the period of climate change. Bulletin of Geography. Physical Geography Series 25: 39–50. DOI: https://doi.org/10.12775/bgeo-2023-0003.

SKOWRON R and SUKHOVILO N, 2022, The surface temperature of water in Polish and Belarusian lakes during the period of climate change. Limnological Review 22(1): 35–43. DOI: https://doi.org/10.2478/limre-2022-0004.

SOBOLEWSKI W, BOROWIAK D, BOROWIAK M and SKOWRON R, 2014, Baza danych jezior Polski i jej wykorzystanie w badaniach limnologicznych (Database of Polish lakes and its use in limnological research – in Polish). "Picador" Komunikacja Graficzna s.c., Lublin: 198.

SOJKA M, PTAK M and ZHU S, 2023, Use of Landsat Satellite images in the assessment of the variability in ice cover on Polish Lakes. Remote Sensing 15(15): 3709. DOI: https://doi.org/10.3390/rs15153709.

STRAILE D, JÖHNK K and ROSSKNECHT H, 2003, Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnology and Oceanography 48(4): 1432–1438. DOI: https://doi.org/10.4319/lo.2003.48.4.1432.

SZIWA R, 2002, Maximum ice cover thickness on lakes of the Oder basin, Przymorze and the lower Vistula basin. In: Turczyński M (ed.) Limnological Review. Lublin: 391–397.

TREPIŃSKA J, 2005, Termiczne skrajności w „umiarkowanym” klimacie Polski (Thermal extremes in Poland's “moderate” climate – in Polish). In: Bogdanowicz E, Kossowska-Cezak U, Szkutnicki J (eds.) Ekstremalne zjawiska hydrologiczne i meteorologiczne (Extreme hydrological and meteorological phenomena – in Polish). Polskie Towarzystwo Geofizyczne, Instytut Meteorologii i Gospodarki Wodnej, Warszawa: 55–63.

WEYHENMEYER GA, MEILI M and LIVINGSTONE DM, 2005, Systematic differences in the trend towards earlier ice-out on Swedish lakes long a latitudinal temperature gradient. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29: 257–260. DOI: https://doi.org/10.1080/03680770.2005.11902010.

WOOLWAY RI, VERBURG P, MERCHANT CJ, LENTERS JD, HAMILTON DP, BROOKES J, KELLY S, HOOK S, LAAS A, PIERSON D, RIMMER A, RUSAK JA and JONES ID, 2017, Latitude and lake size are important predictors of over-lake atmospheric stability. Geophysical Research Letters 44(17): 8875–8883. DOI: https://doi.org/10.1002/2017GL074955.

WRZESIŃSKI D, CHOIŃSKI A and PTAK M, 2015, Effect of the North Atlantic Oscillation on the thermal characteristics of lakes in Poland. Acta Geophysica 63(3): 863-883. DOI: https://doi.org/10.1515/acgeo-2015-0001.

ZDANOWSKI B, WILKOŃSKA H, CIEPIELEWSKI W, SOCHA D, ŚWIĄTECKI A and TUNOWSKI J, 1992, Konin lakes – thirty years of study. Conference: Pollution problems and the protection of surface water – today and tomorrow. University of Warmia and Mazury, Series, Biology 49: 361–380.

ZHU Y, PTAK M, DONG W, SUN J, XU R, ZHU S and SOJKA M, 2025, Less and thinner ice: seven decades of change in the ice cover of temperate lakes (Central Europe, Poland). Acta Geophysica 73: 4467–4478. DOI: https://doi.org/10.1007/s11600-025-01583-9.

Downloads

  • PDF

Published

2025-12-09

How to Cite

1.
SKOWRON, Rajmund and JASZCZYK, Tomasz. Thermal regime of lakes in the Polish Lowlands in the light of climate change. Bulletin of Geography. Physical Geography Series. Online. 9 December 2025. No. 29. [Accessed 10 December 2025]. DOI 10.12775/bgeo-2025-0014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 29 (2025)

Section

Articles

License

Copyright (c) 2025 Rajmund Skowron, Tomasz Jaszczyk

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 16
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

lake, water temperature, ice phenomena, Poland
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop