Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Assessing Land Use and Land Cover Changes in Al Hoceima Province, Morocco (2014–2024): A Comparative Analysis Using Machine Learning Algorithms
  • Home
  • /
  • Assessing Land Use and Land Cover Changes in Al Hoceima Province, Morocco (2014–2024): A Comparative Analysis Using Machine Learning Algorithms
  1. Home /
  2. Archives /
  3. No. 29 (2025) /
  4. Articles

Assessing Land Use and Land Cover Changes in Al Hoceima Province, Morocco (2014–2024): A Comparative Analysis Using Machine Learning Algorithms

Authors

  • Morad Taher Abdelmalek Essaâdi University, Research and Development in Applied Geosciences Laboratory, FSTT, Tetouan, Morocco https://orcid.org/0000-0002-9273-2764
  • Mariem Ben-Said Abdelmalek Essaâdi University, Laboratory of Biology, Ecology and Health, Department of Biology, FS of Tetouan, Tetouan, Morocco. https://orcid.org/0000-0002-5171-0542
  • Abdelhak Bourjila Abdelmalek Essaâdi University, Laboratory of Engineering Sciences and Applications (LSIA)- Research team: Materials Science, Energy and Environment (SM2E), ENSAH, Tetouan, Morocco https://orcid.org/0000-0003-2592-6179
  • Ali Errahmouni Abdelmalek Essaâdi University, Department of Geology, FS of Tetouan, Tetouan, Morocco https://orcid.org/0000-0003-0303-8971
  • Alae Mouddou Abdelmalek Essaâdi University, Research and Development in Applied Geosciences Laboratory, FSTT, Tetouan, Morocco https://orcid.org/0009-0004-9444-6659
  • Issam Etebaai

DOI:

https://doi.org/10.12775/bgeo-2025-0008

Keywords

GIS, Landsat, Maximum Likelihood, NDVI, Rif, Remote Sensing, Random Forest, Support Vector Machine

Abstract

The present work employed of remote sensing data (Landsat 8 OLI images), two machine learning algorithms (the Random Forest RF and Support Vector Machine SVM), and parametric algorithm (the Maximum Likelihood MLH), within the ArcGIS environment to assess the spatiotemporal LULC changes in Al Hoceima province (northeastern Morocco) from 2014 to 2024. Based on the classification generated by MLH algorithm, there was an increase in the forest, urban area, and water-river classes by 8.2%, 1.2%, and 0.2% respectively. Conversely, the vegetation and bare land classes decreased by 1% and 8% respectively. The RF indicated that the forest and water-river classes remained stable from 2014 to 2024, vegetation decreased by 2.3%, while urban area and bare land increased by 0.6% and 1% respectively. The SVM classification revealed an increase of 1% and 0.8% in the forest and urban area, respectively. However, water-river, vegetation, and bare land decreased by 0.2%, 1%, and 0.2% respectively. Overall, there were two common trends for the three classifiers: an increase in urban area (between 0.6% to 1.2 %) and a decrease in vegetation (between -1 % for both MLH and SVM and -2.3% for RF). In terms of accuracy evaluation, the MLH exhibits remarkable overall accuracy of 91% and Kappa coefficient (K = 0.89) followed by the SVM with 88% (K = 0.84). To validate the outcomes of the three algorithms classifier, an estimation of the Normalized Difference Vegetation Index (NDVI) changes was conducted. The results of NDVI changes support the outcomes of RF classifier although it gave the lowest accuracy with 81% (K = 0.77).

References

ABDELKARIM A, 2023, Monitoring and Forecasting of Land Use/Land Cover (LULC) in Al-Hassa Oasis, Saudi Arabia Based on the Integration of the Cellular Automata (CA) and the Cellular Automata-Markov Model (CA-Markov). Geology, Ecology, and Landscapes 00: 1–32. DOI: https://doi.org/10.1080/24749508.2022.2163741.

ACHARKI S, 2022, PlanetScope Contributions Compared to Sentinel-2, and Landsat-8 for LULC Mapping. Remote Sensing Applications: Society and Environment 27: 100774. DOI: https://doi.org/10.1016/j.rsase.2022.100774.

ADAM E, MUTANGA O, ODINDI J and ABDEL-RAHMAN EM, 2014, Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using (RapidEye) Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers. International Journal of Remote Sensing 35(10): 3440–58. DOI: https://doi.org/10.1080/01431161.2014.903435.

AIT EL HAJ F, OUADIF L and AKHSSAS A, 2023, Monitoring Land Use and Land Cover Changes Using Remote Sensing Techniques and the Precipitation-Vegetation Indexes in Morocco. Ecological Engineering and Environmental Technology 24(1): 272–86. DOI: https://doi.org/10.12912/27197050/154937.

ALLAH Z A and ABDERRAHIM W, 2023, Spatiotemporal Evolution in Sub-Humid Region Based on Aerial Photographs and Satellite Imagery: Case Study in Agni Sub-Catchment, Northern Morocco. Remote Sensing Applications: Society and Environment 31: 101002.

ALSHARI EA and GAWALI B W, 2021, Development of Classification System for LULC Using Remote Sensing and GIS. Global Transitions Proceedings, 1st International Conference on Advances in Information. Computing and Trends in Data Engineering (AICDE-2020), 2(1): 8–17. DOI: https://doi.org/10.1016/j.gltp.2021.01.002.

AOURAGH M H, IJLIL S, ESSAHLAOUI N, ESSAHLAOUI A, EL HMAIDI A, EL OUALI A and MRIDEKH A, 2023, Remote Sensing and GIS-Based Machine Learning Models for Spatial Gully Erosion Prediction: A Case Study of Rdat Watershed in Sebou Basin, Morocco. Remote Sensing Applications: Society and Environment 30: 100939.

ATEF I, AHMED W and ABDEL-MAGUID RH, 2023, Modelling of Land Use Land Cover Changes Using Machine Learning and GIS Techniques: A Case Study in El-Fayoum Governorate, Egypt. Environmental Monitoring and Assessment 195(6). DOI: https://doi.org/10.1007/s10661-023-11224-7.

BARAKAT A, KHELLOUK R, EL JAZOULI A, TOUHAMI F and NADEM S, 2018, Monitoring of Forest Cover Dynamics in Eastern Area of Béni-Mellal Province Using ASTER and Sentinel-2A Multispectral Data. Geology, Ecology, and Landscapes 2(3): 203–15.

BASHEER S, WANG X, FAROOQUE AA, NAWAZ RA, LIU K, ADEKANMBI T and LIU S, 2022, Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques. Remote Sensing 14(19): 1–18. DOI: https://doi.org/10.3390/rs14194978.

BEN-SAID M, CHEMCHAOUI A, ETEBAAI I and TAHER M, 2025, Land Use and Land Cover Changes in Morocco: Trends, Research Gaps, and Perspectives. GeoJournal 90(1): 44. DOI: https://doi.org/10.1007/s10708-024-11214-3.

BENZOUGAGH B, MESHRAM S G, FELLAH B E, MASTERE M, EL BASRI M, OUCHEN I, Driss S, Bammou Y, Moutaoikil N and TURYASINGURA B, 2024, Mapping of Land Degradation Using Spectral Angle Mapper Approach (SAM): The Case of Inaouene Watershed (Northeast Morocco). Modeling Earth Systems and Environment 10(1): 221–31.

BOURJILA A, DIMANE F, GHALIT M, TAHER M, KAMARI S, EL HAMMOUDANI Y, Achoukhi I and HABOUBI K, 2023, Mapping the Spatiotemporal Evolution of Seawater Intrusion in the Moroccan Coastal Aquifer of Ghiss-Nekor Using GIS-Based Modeling. Water Cycle 4: 104–19. DOI: https://doi.org/10.1016/j.watcyc.2023.05.002.

BOURJILA A, DIMANE F, NOUAYTI N, TAHER M, and EL OUARGHI H, 2020, Use of GIS, Remote Sensing and AHP Techniques to Delineate Groundwater Potential Zones in the Nekor Basin, Central Rif of Morocco. In: Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020, 1–7.

BOURJILA A, DIMANE F, OUARGHI HE, NOUAYTI N, TAHER M, HAMMOUDANI YE, Saadi O and BENSIALI A, 2021, Groundwater Potential Zones Mapping by Applying GIS, Remote Sensing and Multi-Criteria Decision Analysis in the Ghiss Basin, Northern Morocco. Groundwater for Sustainable Development 15: 100693.

CHAVES EDM, PICOLI CAM and SANCHES DI, 2020, Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing 12(18): 3062. DOI: https://doi.org/10.3390/rs12183062.

CHIRICI G, MURA M, MCINERNEY D, PY N, TOMPPO EO, WASER LT, Travaglini D and MCROBERTS RE, 2016, A Meta-Analysis and Review of the Literature on the k-Nearest Neighbors Technique for Forestry Applications That Use Remotely Sensed Data. Remote Sensing of Environment 176: 282–94. DOI: https://doi.org/10.1016/j.rse.2016.02.001.

CHOWDHURY MS, 2024a, Comparison of Accuracy and Reliability of Random Forest, Support Vector Machine, Artificial Neural Network and Maximum Likelihood Method in Land Use/Cover Classification of Urban Setting. Environmental Challenges 14: 100800. DOI: https://doi.org/10.1016/j.envc.2023.100800.

CHOWDHURY MS, 2024b, Comparison of Accuracy and Reliability of Random Forest, Support Vector Machine, Artificial Neural Network and Maximum Likelihood Method in Land Use/Cover Classification of Urban Setting. Environmental Challenges 14: 100800. DOI: https://doi.org/10.1016/j.envc.2023.100800.

CHU M, LU J and SUN D, 2022, Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 11(2): 275. DOI: https://doi.org/10.3390/land11020275.

DAUNT ABP, INOSTROZA L and HERSPERGER AM, 2021, The Role of Spatial Planning in Land Change: An Assessment of Urban Planning and Nature Conservation Efficiency at the Southeastern Coast of Brazil. Land Use Policy 111: 105771. DOI: https://doi.org/10.1016/j.landusepol.2021.105771.

DIBS H, HASAB HA, AL-RIFAIE JK and AL-ANSARI N, 2020, An Optimal Approach for Land-Use / Land-Cover Mapping by Integration and Fusion of Multispectral Landsat OLI Images: Case Study in Baghdad, Iraq. Water, Air, & Soil Pollution 231(9): 488. DOI: https://doi.org/10.1007/s11270-020-04846-x.

EL ADNANI A, Habib A, El khalidi K and Zourarah B, 2019, Spatio-Temporal Dynamics and Evolution of Land Use Land Cover Using Remote Sensing and GIS in Sebou Estuary, Morocco. Journal of Geographic Information System 11(5): 551–66. DOI: https://doi.org/10.4236/jgis.2019.115034.

ERRAHMOUNI A, EL MESSARI JES and TAHER M, 2022, Estimation of Groundwater Recharge Using APLIS Method – Case Study of Bokoya Massif (Central Rif, Morocco). Ecological Engineering and Environmental Technology 23(4): 57–66. DOI: https://doi.org/10.12912/27197050/149956.

FRIMPONG BF, KORANTENG A, ATTA-DARKWA T, JUNIOR OF and ZAWIŁA-NIEDŹWIECKI T, 2023, Land Cover Changes Utilising Landsat Satellite Imageries for the Kumasi Metropolis and Its Adjoining Municipalities in Ghana (1986–2022). Sensors 23(5): 2644. DOI: https://doi.org/10.3390/s23052644.

FUNDISI E, TESFAMICHAEL SG and AHMED F, 2022, Remote Sensing of Savanna Woody Species Diversity: A Systematic Review of Data Types and Assessment Methods. PLoS ONE 17: 1–29. DOI: https://doi.org/10.1371/journal.pone.0278529.

GISLASON PO, BENEDIKTSSON JA and SVEINSSON JR, 2006, Random Forests for Land Cover Classification. Pattern Recognition Letters 27(4): 294–300.

GONG W, LIU T, DUAN X, SUN Y, ZHANG Y, TONG X and QIU Z, 2022, Estimating the soil erosion response to land-use land-cover change using GIS-based RUSLE and remote sensing: a case study of miyun reservoir, north China. Water 14(5): 742.

GXOKWE S, DUBE T and MAZVIMAVI D, 2023, An Assessment of Long-Term and Large-Scale Wetlands Change Dynamics in the Limpopo Transboundary River Basin Using Cloud-Based Earth Observation Data. Wetlands Ecology and Management 32: 89-108. DOI: https://doi.org/10.1007/s11273-023-09963-y.

HASAN MM, NILAY MSM, JIBON NH and RAHMAN RM, 2023, LULC Changes to Riverine Flooding: A Case Study on the Jamuna River, Bangladesh Using the Multilayer Perceptron Model. Results in Engineering 18: 101079. DOI: https://doi.org/10.1016/j.rineng.2023.101079.

HASAN NA, YANG D and AL-SHIBLI F, 2023, A Historical–Projected Analysis in Land Use/Land Cover in Developing Arid Region Using Spatial Differences and Its Relation to the Climate. Sustainability (Switzerland) 15(3): 2821. DOI: https://doi.org/10.3390/su15032821.

HCP. 2017. Monographie Provinciale. Edited by High Commission for Planning. Monographi.

Hossain MS, Khan MAH, Oluwajuwon TV, Biswas J, Rubaiot Abdullah SM, Tanvir MSSI, Munira S and Chowdhury MNA, 2023, Spatiotemporal Change Detection of Land Use Land Cover (LULC) in Fashiakhali Wildlife Sanctuary (FKWS) Impact Area, Bangladesh, Employing Multispectral Images and GIS. Modeling Earth Systems and Environment 9(3): 3151–73. DOI: https://doi.org/10.1007/s40808-022-01653-7.

HU Y, RAZA A, SYED NR, ACHARKI S, RAY RL, HUSSAIN S, Dehghanisanij H, Zubair M and ELBELTAGI A, 2023, Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province. Sustainability (Switzerland) 15(4): 3572. DOI: https://doi.org/10.3390/su15043572.

IENCO D, INTERDONATO R, GAETANO R and MINH DHT, 2019, Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for Land Cover Mapping via a Multi-Source Deep Learning Architecture. ISPRS Journal of Photogrammetry and Remote Sensing 158: 11–22.

JUNAID M, SUN J, IQBAL A, SOHAIL M, ZAFAR S and KHAN A, 2023, Mapping LULC Dynamics and Its Potential Implication on Forest Cover in Malam Jabba Region with Landsat Time Series Imagery and Random Forest Classification. Sustainability (Switzerland) 15(3): 1858. DOI: https://doi.org/10.3390/su15031858.

KRUASILP J, PATTANAKIAT S, PHUTTHAI T, VARDHANABINDU P and NAKMUENWAI P, 2023, Evaluation of Land Use Land Cover Changes in Nan Province, Thailand, Using Multi-Sensor Satellite Data and Google Earth Engine. Environment and Natural Resources Journal 21(2): 186–97. DOI: https://doi.org/10.32526/ennrj/21/202200200.

Kumar A and Gorai AK, 2023, A Comparative Evaluation of Deep Convolutional Neural Network and Deep Neural Network-Based Land Use/Land Cover Classifications of Mining Regions Using Fused Multi-Sensor Satellite Data. Advances in Space Research 72(11): 4663–76. DOI: https://doi.org/10.1016/j.asr.2023.08.057.

LAVANYA K, MAHENDRAN A, SELVANAMBI R, MAZZARA M and HEMANTH JD, 2023, Tunicate Swarm Algorithm with Deep Learning Based Land Use and Cover Change Detection in Nallamalla Forest India. Applied Sciences (Switzerland) 13(2): 1173. DOI: https://doi.org/10.3390/app13021173.

LEKKA C, PETROPOULOS GP and DETSIKAS SE, 2024, Appraisal of EnMAP Hyperspectral Imagery Use in LULC Mapping When Combined with Machine Learning Pixel-Based Classifiers. Environmental Modelling & Software 173: 105956. DOI: https://doi.org/10.1016/j.envsoft.2024.105956.

LOUKIKA KN, KEESARA VR and SRIDHAR V, 2021, Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability (Switzerland) 13(24): 13758. DOI: https://doi.org/10.3390/su132413758.

MANSOUR S, GHONEIM E, EL-KERSH A, SAID S and ABDELNABY S, 2023, Spatiotemporal Monitoring of Urban Sprawl in a Coastal City Using GIS-Based Markov Chain and Artificial Neural Network (ANN). Remote Sensing 15(3): 1–24. DOI: https://doi.org/10.3390/rs15030601.

MAZI ME, SABER E and HOUARI A, 2018, Spatial and Temporal Evolution of Forests Ecosystems in the Numidian Massif of the Rif Range (Morocco): Case of Jbel Outka Evolution Spatio-Temporelle Des Écosystèmes Forestiers Dans Les Massifs Numidiens de La Chaîne Rifaine (Maroc): Cas de Jbel Outka. Geo-Eco-Trop 42 (1): 133–45.

MCHUGH ML, 2012, Interrater Reliability: The Kappa Statistic. Biochemia Medica 22(3): 276–82.

MIRMAZLOUMI SM, KAKOOEI M, MOHSENI F, GHORBANIAN A, AMANI M, CROSETTO M and MONSERRAT O, 2022, ELULC‐10, a 10 m European Land Use and Land Cover Map Using Sentinel and Landsat Data in Google Earth Engine. Remote Sensing 14(13): 1–27. DOI: https://doi.org/10.3390/rs14133041.

MISBAH K, LAAMRANI A, KHECHBA K, DHIBA D and CHEHBOUNI A, 2022, Multi-Sensors Remote Sensing Applications for Assessing, Monitoring, and Mapping Npk Content in Soil and Crops in African Agricultural Land. Remote Sensing 14(1): 81. DOI: https://doi.org/10.3390/rs14010081.

MOHAJANE M, ESSAHLAOUI ALI, OUDIJA F, EL HAFYANI ME, EL HMAIDI AE, EL OUALI AE, Randazzo G and TEODORO AC, 2018, Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5(12): 131. DOI: https://doi.org/10.3390/environments5120131.

MOUMANE A, AL KARKOURI J, BENMANSOUR A, EL GHAZALI FE, FICO J, KARMAOUI A and BATCHI M, 2022, Monitoring Long-Term Land Use, Land Cover Change, and Desertification in the Ternata Oasis, Middle Draa Valley, Morocco. Remote Sensing Applications: Society and Environment 26: 100745.

NASH MS, CHALOUD DJ, KEPNER WG and SARRI S, 2008, Morocco Case Study (1981–2003). Environmental Change and Human Security: Recognizing and Acting on Hazard Impacts, 143.

NGUYEN TT, ADERDOUR N, RHINANE H and BUERKERT A, 2023, Vegetation Cover Dynamics in the High Atlas Mountains of Morocco. Remote Sensing 15(5): 1366. DOI: https://doi.org/10.3390/rs15051366.

OMDI FE, DAOUDI L and ADIRI Z, 2017, Land Cover Changes in the Ksob Watershed (Western High Atlas, Morocco) Using Remote Sensing Techniques 8(10): 2229-5518.

OO TK, ARUNRAT N, SEREENONCHAI S, USSAWARUJIKULCHAI A, CHAREONWONG U and NUTMAGUL W, 2022, Comparing Four Machine Learning Algorithms for Land Cover Classification in Gold Mining: A Case Study of Kyaukpahto Gold Mine, Northern Myanmar. Sustainability (Switzerland) 14(17): 10754. DOI: https://doi.org/10.3390/su141710754.

OUCHRA H, BELANGOUR A and ERRAISSI A, 2023a, Machine Learning Algorithms for Satellite Image Classification Using Google Earth Engine and Landsat Satellite Data: Morocco Case Study. IEEE Access.

OUCHRA H, BELANGOUR A, ERRAISSI A and BANANE M, 2023b, Assessing Machine Learning Algorithms for Land Use and Land Cover Classification in Morocco Using Google Earth Engine. In: International Conference on Image Analysis and Processing, 395–405. Springer.

PACHECO QUEVEDO R, VELASTEGUI-MONTOYA A, MONTALVÁN-BURBANO N, MORANTE-CARBALLO F, KORUP O and DALELES RENNÓ C, 2023, Land Use and Land Cover as a Conditioning Factor in Landslide Susceptibility: A Literature Review. Landslides 20(5): 967–82.

PANDEY DK, HUNJRA AI, BHASKAR R and AL-FARYAN MAS, 2023, Artificial Intelligence, Machine Learning and Big Data in Natural Resources Management: (A) Comprehensive Bibliometric Review of Literature Spanning 1975–2022. Resources Policy 86: 104250. DOI: https://doi.org/10.1016/j.resourpol.2023.104250.

PHAN TN, KUCH V and LEHNERT LW, 2020, Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing 12(15): 2411. DOI: https://doi.org/10.3390/rs12152411.

SHETTY S, GUPTA PK, BELGIU M and SRIVASTAV SK, 2021, Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sensing 13(8): 1433. DOI: https://doi.org/10.3390/rs13081433.

SISAY G, GESSESSE B, FÜRST C, KASSIE M and KEBEDE B, 2023, Modeling of Land Use/Land Cover Dynamics Using Artificial Neural Network and Cellular Automata Markov Chain Algorithms in Goang Watershed, Ethiopia. Heliyon 9(9): e20088. DOI: https://doi.org/10.1016/j.heliyon.2023.e20088.

TAHER M, MOURABIT T, ERRAHMOUNI A and BOURJILA A, 2023, New Tectonic and Topometric Evidence of Modern Transtensional Tectonics in the Low Nekor Basin (NE Morocco). Advances in Science, Technology and Innovation, 175–78. DOI: https://doi.org/10.1007/978-3-031-43222-4_38.

TAHER M, MOURABIT T, ETEBAAI I, DEKKAKI H C, AMARJOUF N, AMINE A, Abdelhak B, Errahmouni A and AZZOUZI S, 2023, Identification of groundwater potential zones (GWPZ) Using geospatial techniques and AHP method: A case study of the Boudinar Basin, Rif Belt (Morocco). Geomatics and Environmental Engineering 17(3): 83–106.

TAHER M, MOURABIT T, BOURJILA A, SAADI O, ERRAHMOUNI A, EL MARZKIOUI F and EL MOUSAOUI M, 2022, An Estimation of Soil Erosion Rate Hot Spots by Integrated USLE and GIS Methods: A Case Study of the Ghiss Dam and Basin in Northeastern Morocco. Geomatics and Environmental Engineering 16(2): 95–110. DOI: https://doi.org/10.7494/geom.2022.16.2.95.

TAHER M, MOURABIT T, EL TALIBI H, ETEBAAI I, BOURJILA A, ERRAHMOUNI A and LAMGHARBAJ M, 2022, The Risk Mapping of Coastal Flooding Areas Due to Tsunami Wave Run-Up Using DAS Model and Its Impact on Nekor Bay (Morocco). Ecological Engineering and Environmental Technology 23(4): 136–48. DOI: https://doi.org/10.12912/27197050/150310.

Talukdar S, Singha P, Mahato S, Pal S, Liou YA and Rahman A, 2020, Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote sensing 12(7): 1135. DOI: https://doi.org/10.3390/rs12071135.

TASSI A, GIGANTE D, MODICA G, DI MARTINO L and VIZZARI M, 2021, Pixel-vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sensing 13(12): 2299. DOI: https://doi.org/10.3390/rs13122299.

UICN, 2012, Union Internationale Pour La Conservation de La Nature et de Ses Ressources (UICN) (nternational Union for Conservation of Nature and Natural Resources (IUCN) – in French), 6–26.

VERDE N, KOKKORIS I P, GEORGIADIS C, KAIMARIS D, DIMOPOULOS P, MITSOPOULOS I and MALLINIS G, 2020, National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sensing 12(20): 1–24. DOI: https://doi.org/10.3390/rs12203303.

WANG Y, SUN Y, CAO X, WANG Y, ZHANG W and CHENG X, 2023, A Review of Regional and Global Scale Land Use/Land Cover (LULC) Mapping Products Generated from Satellite Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing 206: 311–34. DOI: https://doi.org/10.1016/j.isprsjprs.2023.11.014.

WULDER MA, COOPS NC, ROY DP, WHITE JC and HERMOSILLA T, 2018a, Land Cover 2.0. International Journal of Remote Sensing 39(12): 4254–84. DOI: https://doi.org/10.1080/01431161.2018.1452075.

Downloads

  • PDF

Published

2025-09-18

How to Cite

1.
TAHER, Morad, BEN-SAID, Mariem, BOURJILA, Abdelhak, ERRAHMOUNI, Ali, MOUDDOU, Alae and ETEBAAI, Issam. Assessing Land Use and Land Cover Changes in Al Hoceima Province, Morocco (2014–2024): A Comparative Analysis Using Machine Learning Algorithms. Bulletin of Geography. Physical Geography Series. Online. 18 September 2025. No. 29, pp. 23-41. [Accessed 24 November 2025]. DOI 10.12775/bgeo-2025-0008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 29 (2025)

Section

Articles

License

Copyright (c) 2025 Morad Taher, Mariem Ben-Said, Abdelhak Bourjila, Ali Errahmouni, Alae Mouddou, Issam Etebaai

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 171
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

GIS, Landsat, Maximum Likelihood, NDVI, Rif, Remote Sensing, Random Forest, Support Vector Machine
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop