Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Morphometry-based flood hazard zonation of Ajay River basin using coupled TOPSIS–VIKOR models, India
  • Home
  • /
  • Morphometry-based flood hazard zonation of Ajay River basin using coupled TOPSIS–VIKOR models, India
  1. Home /
  2. Archives /
  3. No. 29 (2025) /
  4. Articles

Morphometry-based flood hazard zonation of Ajay River basin using coupled TOPSIS–VIKOR models, India

Authors

  • Shanku Ghosh Assam University Diphu Campus (A Central University), Department of Geography, School of Earth Sciences, Diphu, Karbi Anglong, Assam, India https://orcid.org/0009-0009-6613-0354
  • Chakkaravarthi Parakasm Assam University, Department of Geography, School of Earth Sciences, Diphu Campus, Diphu, Assam, India https://orcid.org/0000-0003-0515-4714

DOI:

https://doi.org/10.12775/bgeo-2025-0009

Keywords

MCDM, Geomorphic Analysis, AHP, Flood Hazard Mapping

Abstract

The main aim of the study is to delineate flood-hazard-prone zones in the Ajay River basin using advanced multi-criterion decision-making (MCDM) models. TOPSIS and VIKOR are the two models which were employed, due to their complex decision-making ability and efficient integration of multiple influencing factors. The Ajay River is a severely flood-prone river; flooding of the river is concentrated within the monsoon season, triggered by successive episodes of the high-intensity monsoonal precipitation that inundates the lower floodplain. Post-independence, the river has experienced several flood events, which continue to constitute a major issue in the lower floodplain of the river. Fourteen flood conditioning factors, i.e. drainage density, drainage texture, drainage frequency, Normalized Difference Water Index (NDWI), confluence density, soil type, geology, elevation, relief, dissection index, ruggedness, slope, length of overland flow and infiltration number, were used to generate the final flood hazard maps. Parameter weightages were calculated using the Analytic Hierarchy Process (AHP). The two models showed very similar results; while the TOPSIS model classified 8% and 24% of the basin area as highly and very highly hazard-prone, respectively, the VIKOR model assigned 10% and 23% of the basin area to the same respective classes. These areas are spread throughout the floodplains of the lower Ajay River basin. The validation flood points were obtained from the annual flood report of West Bengal (2023). The Receiver Operating Characteristics (ROC) curve method was used, and both models revealed high accuracy, with area under the ROC curve (AUC) values of 0.827 and 0.837. These results confirm the models' suitability for similar environmental conditions, making them valuable tools for strategic flood-hazard management planning in the study area.

References

ANTWI-AGYAKWA KT, AFENYO MK and ANGNUURENG DB, 2023, Know to predict, forecast to warn: a review of flood risk prediction tools. Water 15(3): 427. DOI: https://doi.org/10.3390/w15030427.

BANDYOPADHYAY S, KAR NS, DAS S and SEN J, 2014, River systems and water resources of West Bengal: a review. Geological Society of India special publication 3(2014): 63-84.

BRAUERS WK and ZAVADSKAS EK, 2006, The MOORA method and its application to privatization in a transition economy. Control and cybernetics 35(2): 445-469.

CHOWDHURY MS, 2024, Flash flood susceptibility mapping of north-east depression of Bangladesh using different GIS based bivariate statistical models. Watershed Ecology and the Environment 6: 26-40. DOI: https://doi.org/10.1016/j.wsee.2024.01.001.

DEBNATH J, SAHARIAH D, MAZUMDAR M, LAHON D, MERAJ G, HASHIMOTO S and others, 2023, Evaluating flood susceptibility in the brahmaputra river basin: an insight into Asia's Eastern Himalayan floodplains using machine learning and multi-criteria decision-making. Earth Systems and Environment 7(4): 733-760. DOI: https://doi.org/10.1007/s41748-023-00355-z.

DEVANAND MR and KUNDAPURA S, 2021, Flood inundation mapping of harangi river basin, kodagu, using GIS techniques and HEC-RAS model. Trends in Civil Engineering and Challenges for Sustainability: Select Proceedings of CTCS 2019: 665-678. DOI: https://doi.org/10.1007/978-981-15-6828-2_49.

DI BALDASSARRE G, MONTANARI A, LINS H, KOUTSOYIANNIS D, BRANDIMARTE L and BLÖSCHL G, 2010, Flood fatalities in Africa: from diagnosis to mitigation. Geophysical research letters 37(22). DOI: https://doi.org/10.1029/2010GL045467.

DUAN Y, 2024, Global projections of flood risk under climate change (No. EGU24-7030). Copernicus Meetings.

DUAN Y, XIONG J, CHENG W, LI Y, WANG N, SHEN G and YANG J, 2022, Increasing global flood risk in 2005–2020 from a multi-scale perspective. Remote Sensing 14(21): 5551. DOI: https://doi.org/10.3390/rs14215551.

GHORABAEE MK, AMIRI M, SADAGHIANI JS and ZAVADSKAS EK, 2015, Multi-criteria project selection using an extended VIKOR method with interval type-2 fuzzy sets. International Journal of Information Technology & Decision Making 14(05): 993-1016. DOI: https://doi.org/10.1142/S021962201550023X.

GHORABAEE MK, AMIRI M, ZAVADSKAS EK, TURSKIS Z and ANTUCHEVICIENE J, 2017, A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering 112: 156-174. DOI: https://doi.org/10.1016/j.cie.2017.08.017.

GLAS H, ROCABADO I, HUYSENTRUYT S, MAROY E, SALAZAR CORTEZ D, COOREVITS K and others, 2019, Flood risk mapping worldwide: A flexible methodology and toolbox. Water 11(11): 2371. DOI: https://doi.org/10.3390/w11112371.

GUPTA L and DIXIT J, 2022, A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level. Geocarto International 37(26): 11867-11899. DOI: https://doi.org/10.1080/10106049.2022.2060312.

KADER Z, ISLAM MR, AZIZ MT, HOSSAIN MM, ISLAM MR, MIAH M and JAAFAR WZW, 2024, GIS and AHP-based flood susceptibility mapping: a case study of Bangladesh. Sustainable Water Resources Management 10(5): 170. DOI: https://doi.org/10.1007/s40899-024-01081-8.

KHOSRAVI K, SHAHABI H, PHAM BT, ADAMOWSKI J, SHIRZADI A, PRADHAN B and PRAKASH I, 2019, A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology 573: 311-323. DOI: https://doi.org/10.1016/j.jhydrol.2019.03.073.

MALIK S, PAL SC, ARABAMERI A, CHOWDHURI I, SAHA A, CHAKRABORTTY R and others, 2021, GIS-based statistical model for the prediction of flood hazard susceptibility. Environment, Development and Sustainability 23: 16713-16743. DOI: https://doi.org/10.1007/s10668-021-01375-3.

MITRA R and DAS J, 2023, A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environmental Science and Pollution Research 30(6): 16036-16067. DOI: https://doi.org/10.1007/s11356-022-23167-6.

MITRA R, SAHA P and DAS J, 2022, Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics, Natural Hazards and Risk 13(1): 2183-2226. DOI: https://doi.org/10.1080/19475705.2022.2112094.

POURGHASEMI HR and RAHMATI O, 2018, Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 162: 177-192. DOI: https://doi.org/10.1016/j.catena.2017.11.022.

POURGHASEMI HR, KARIMINEJAD N, AMIRI M, EDALAT M, ZARAFSHAR M, BLASCHKE T and CERDA A, 2020, Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Scientific reports 10(1): 3203. DOI: https://doi.org/10.1038/s41598-020-60191-3.

PRASOJO OA, HURST MD, WILLIAMS RD, NAYLOR LA and TONEY J, 2024, Slowing down the tidal flood wave is the key to reducing tidal flood risk in estuaries worldwide (No. EGU24-17737). Copernicus Meetings.

ROY S, 2012, Spatial Variation of Floods in the Lower Ajay River Basin, West Bengal: A Geo-Hydrological Analysis. International Journal of Remote Sensing and GIS 1(2): 132-143.

SARKAR D and MONDAL P, 2020, Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region. Applied Water Science 10(1): 1-13. DOI: https://doi.org/10.1007/s13201-019-1102-x.

SHAH AI and PAN ND, 2024, Flood susceptibility assessment of Jhelum River Basin: A comparative study of TOPSIS, VIKOR and EDAS methods. Geosystems and Geoenvironment 3(4): 100304. DOI: https://doi.org/10.1016/j.geogeo.2024.100304.

THAKKAR JJ and THAKKAR JJ, 2021, Technique for order preference and similarity to ideal solution (TOPSIS). Multi-Criteria Decision Making: 83-91. DOI: https://doi.org/10.1007/978-981-33-4745-8_8.

VASHIST K and SINGH KK, 2024, Flood hazard mapping using GIS‐based AHP approach for Krishna River basin. Hydrological Processes 38(6): e15212. DOI: https://doi.org/10.1002/hyp.15212.

YESILNACAR EK, 2005, The application of computational intelligence to landslide susceptibility mapping in Turkey. University of Melbourne, Department.

ZHRAN M, GHANEM K, TARIQ A, ALSHEHRI F, JIN S, DAS J and others, 2024, Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: a case study of the Damietta branch. Environmental Sciences Europe 36(1): 1-25. DOI: https://doi.org/10.1186/s12302-024-00936-3.

Downloads

  • PDF

Published

2025-09-24

How to Cite

1.
GHOSH, Shanku and PARAKASM, Chakkaravarthi. Morphometry-based flood hazard zonation of Ajay River basin using coupled TOPSIS–VIKOR models, India. Bulletin of Geography. Physical Geography Series. Online. 24 September 2025. No. 29, pp. 43-63. [Accessed 24 November 2025]. DOI 10.12775/bgeo-2025-0009.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 29 (2025)

Section

Articles

License

Copyright (c) 2025 Shanku Ghosh, Chakkaravarthi Parakasm

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 109
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

MCDM, Geomorphic Analysis, AHP, Flood Hazard Mapping
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop