Rayleigh-wave group-velocity maps of Thailand, Myanmar and Malaysia derived from Ambient Noise Tomography with parameter testing
DOI:
https://doi.org/10.12775/bgeo-2025-0011Keywords
Indo-China Terrane, Parameter Tests, Peninsula Malaysia, Peninsula Thailand, Shan-Thai Terrane, West-Burma TerraneAbstract
Ambient Noise Tomography (ANT) was employed using data from 52 seismic stations – 26 from the Thai Meteorological Network and 26 from surrounding networks, collected over a specific time frame. Dispersion curves were systematically stacked over three-month intervals to mitigate seasonal variations, accepting only those with SNR ≥ 2 and SD ≤ 0.1 km·s-¹. Rigorous parameter tests validated the methodology, which was found to be particularly appropriate for seismic investigations in the geologically complex regions of Thailand, the Malaysia Peninsula and the Thailand Peninsula, emphasising the Central Basin. The study generated detailed Rayleigh-wave group-velocity maps, revealing significant lateral variations in seismic velocities. High-velocity zones were predominantly associated with the Shan-Thai Terrane, whereas low-velocity areas were observed in Northern Thailand, the West-Burma Terrane and the Khorat Plateau. Comparative analysis with existing studies corroborates the validity of our methodology. The results provide a detailed characterisation of the seismic landscape, encompassing structures from the upper crust to deeper features such as the mid-crustal Conrad discontinuity. This study has wider implications for earthquake preparedness and resource exploration, while also acknowledging specific limitations associated with data constraints. Overall, this study affirms the effectiveness of ANT as an invaluable tool for seismic research in regions with intricate geological histories and active tectonic settings.
References
ABDELFATTAH AK, AL-AMRI A, ALZAHRANI H and ABUAMARAH BA, 2023, Ambient noise tomography in the upper crust of North Harrat Rahat, Saudi Arabia. Journal of King Saud University – Science 35(2): 102523. DOI: https://doi.org/10.1016/j.jksus.2022.102523.
BARMIN MP, RITZWOLLER MH and LEVSHIN AL, 2001, A fast and reliable method for surface wave tomography. Pure and Applied Geophysics 158(8): 1351–1375. DOI: https://doi.org/10.1007/PL00001225.
BELOVEZHETS NN, BEREZHNEV YM, KOULAKOV IY, SHAPIRO NM, ABKADYROV IF, RYCHAGOV SN and GORDEEV EI, 2021, The structure of the upper crust beneath the Kambalny volcano (South Kamchatka) revealed from ambient noise tomography. Doklady Earth Sciences 501(1): 933–937. DOI: https://doi.org/10.1134/S1028334X21110040.
BENSEN GD, RITZWOLLER MH, BARMIN MP, LEVSHIN AL, LIN F, MOSCHETTI MP and YANG Y, 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International 169(3): 1239–1260. DOI: https://doi.org/10.1111/j.1365-246X.2007.03374.x.
BHONGSUWAN T and PONATHONG P, 2002, Magnetic Characterization of the Thung-Yai Redbed of Nakhon Si Thammarat Province, Southern Thailand, and Magnetic Relationship with the Khorat Redbed. ScienceAsia 28: 277–290.
CHARUSIRI P, CLARK AH, FARRAR E, ARCHIBALD D and CHARUSIRI B, 1993, Granite belts in Thailand: evidence from the 40Ar/39Ar geochronological and geological syntheses. Journal of Southeast Asian Earth Sciences 8(1): 127–136. DOI: https://doi.org/10.1016/0743-9547(93)90014-G.
COBBING EJ, 2011, Granitic rocks. In: Ridd mf, Barber aj and Crow mj (eds.), The Geology of Thailand. Geological Society of London.
COOPER CM, MILLER MS and MORESI L, 2017, The structural evolution of the deep continental lithosphere. Tectonophysics 695: 100–121. DOI: https://doi.org/10.1016/j.tecto.2016.12.004.
DEPARTMENT OF MINERAL RESOURCES (DMR), 2007, Geological Map of Thailand. Ministry of Natural Resources and Environment, Thailand.
GOUTORBE B, COELHO DLD and DROUET S, 2015, Rayleigh wave group velocities at periods of 6-23 s across Brazil from ambient noise tomography. Geophysical Journal International 203(2): 869–882. DOI: https://doi.org/10.1093/gji/ggv343.
HANSEN BT and WEMMER K, 2011, Age and evolution of the basement rocks in Thailand. In: Ridd MF, Barber AJ and Crow MJ (eds.), The Geology of Thailand. Geological Society of London.
KIL D, HONG TK, CHUNG D, KIM B, LEE J and PARK S, 2021, Ambient noise tomography of upper crustal structures and Quaternary faults in the Seoul metropolitan area and its geological implications. Earth and Space Science 8(11): 1-27. DOI: https://doi.org/10.1029/2021EA001983.
KOSUWAN S, TAKASHIMA I and CHARUSIRI P, 2018, Active Fault Zones in Thailand. Available at: http://www.dmr.go.th/main.php?filename=fault_en.
KOZAR MG, CRANDALL GF and HALL SE, 1992, Integrated Structural and Stratigraphic Study of the Khorat Basin, Rat Buri Limestone (Permian), Thailand. Paper presented at the National Conference on "Geologic Resources of Thailand: Potential for Future Development," Bangkok, Thailand, 17-24 November.
KREEMER C, BLEWITT G and KLEIN EC, 2014, A geodetic plate motion and global strain rate model. Geochemistry, Geophysics, Geosystems 15(10): 3849–3889. DOI: https://doi.org/10.1002/2014GC005407.
LASKE G, MASTERS G, MA Z and PASYANOS M, 2013, Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-2658, 15. Available at: http://adsabs.harvard.edu/abs/2013EGUGA..15.2658L.
LÉVÊQUE JJ, RIVERA L and WITTLINGER G, 1993, On the use of the checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International 115(1): 313–318. DOI: https://doi.org/10.1111/j.1365-246X.1993.tb05605.x.
LEVSHIN AL and RITZWOLLER MH, 2001, Automated detection, extraction, and measurement of regional surface waves. Pure and Applied Geophysics 158(8): 1531–1545. DOI: https://doi.org/10.1007/PL00001233.
LIN FC, RITZWOLLER MH, TOWNEND J, BANNISTER S and SAVAGE MK, 2007, Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International 170(2): 649–666. DOI: https://doi.org/10.1111/j.1365-246X.2007.03414.x.
LIN YL, YEH MW, LEE TY, CHUNG SL, IIZUKA Y and CHARUSIRI P, 2013, First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Research 24(3-4): 1031–1037. DOI: https://doi.org/10.1016/j.gr.2013.05.014.
LOVATT SMITH PF, STOKES RB and BRISTOW C, 1996, Mid-Cretaceous inversion in the Northern Khorat Plateau of Lao PDR and Thailand. Geological Society, London, Special Publications 106(1): 233–247. DOI: https://doi.org/10.1144/GSL.SP.1996.106.01.15.
MORLEY CK, CHARUSIRI P and WATKINSON IM, 2011, Structural geology of Thailand during the Cenozoic. In: In: Ridd MF, Barber AJ and Crow MJ (eds.), The Geology of Thailand. Geological Society of London.
NOISAGOOL S, BOONCHAISUK S, PORNSOPIN P and SIRIPUNVARAPORN W, 2014, Thailand's crustal properties from tele-seismic receiver function studies. Tectonophysics 632: 64–75. DOI: https://doi.org/10.1016/j.tecto.2014.06.014.
NOISAGOOL S, BOONCHAISUK S, PORNSOPIN P and SIRIPUNVARAPORN W, 2016, The regional moment tensor of the 5 May 2014 Chiang Rai earthquake (Mw=6.5), Northern Thailand, with its aftershocks and its implication to the stress and the instability of the Phayao Fault Zone. Journal of Asian Earth Sciences 127: 231–245. DOI: https://doi.org/10.1016/j.jseaes.2016.06.008.
PANANONT P, HERMAN MW, PORNSOPIN P, FURLONG KP, HABANGKAEM S, WALDHAUSER F and WECHBUNTHUNG B, 2017, Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence. Journal of Geophysical Research: Solid Earth 122(8): 6367–6388. DOI: https://doi.org/10.1002/2017JB014085.
POVEDA E, JULIÀ J, SCHIMMEL M and PEREZ-GARCIA N, 2018, Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth 123(2): 1459–1485. DOI: https://doi.org/10.1002/2017JB014688.
RIDD MF, BARBER AJ and CROW MJ, 2011, Introduction to the geology of Thailand. In: Ridd MF, Barber AJ and Crow MJ (eds.), The Geology of Thailand. Geological Society of London.
SAETANG K, 2017, Focal Mechanisms of Mw 6.3 Aftershocks from Waveform Inversions, Phayao Fault Zone, Northern Thailand. International Journal of Geophysics 2017: 9059825. DOI: https://doi.org/10.1155/2017/9059825.
SAETANG K, 2022, Two-layer model of anisotropy beneath Myanmar and Thailand revealed by shear-wave splitting. Annals of Geophysics 65(6): 1–13. DOI: https://doi.org/10.4401/ag-8769.
SAETANG K and DURRAST H, 2023, A minimum 1-D velocity model of Northern Thailand. Journal of Seismology 27(3): 493-504. DOI: https://doi.org/10.1007/s10950-023-10148-6.
SAETANG K, SRISAWAT W and DURRAST H, 2018, Crustal Structures, Geothermal Sources and Pathways Beneath Northern Thailand Revealed by Local Earthquake Tomography. Chiang Mai Journal of Science 45(1): 565–575.
SEARLE MP and MORLEY CK, 2011, Tectonic and thermal evolution of Thailand in the regional context of SE Asia. In: Ridd MF, Barber AJ and Crow MJ (eds.), The Geology of Thailand. Geological Society of London.
SHAPIRO NM, CAMPILLO M, STEHLY L and RITZWOLLER MH, 2005, High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715): 1615–1618. DOI: https://doi.org/10.1126/science.1108339.
SHIRZAD T and SHOMALI ZH, 2014, Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography. Geophysical Journal International 196(2): 1162–1176. DOI: https://doi.org/10.1093/gji/ggt449.
SIANGPIPOP S, 2022, Shear wave velocity model by c1 and c2 combination using ambient seismic noise beneath Northern Thailand. PhD Thesis. Graduate School, Chiang Mai University. Available at: http://cmuir.cmu.ac.th/jspui/handle/6653943832/78165.
STOKES RB, LOVATT SMITH PF and SOUMPHONPHAKDY K, 1996, Timing of the Shan-Thai-Indochina collision: new evidence from the Pak Lay Foldbelt of the Lao PDR. Geological Society, London, Special Publications 106(1): 225–232. DOI: https://doi.org/10.1144/GSL.SP.1996.106.01.14.
WANG YD, LIN FC, SCHMANDT B and FARRELL J, 2017, Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth 122(6): 4492–4508. DOI: https://doi.org/10.1002/2016JB013769.
YANG YJ, RITZWOLLER MH, LEVSHIN AL and SHAPIRO NM, 2007, Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International 168(1): 259–274. DOI: https://doi.org/10.1111/j.1365-246X.2006.03203.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kasemsak Saetang, Wilaiwan Srisawat

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 151
Number of citations: 0