Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Gravity-anomaly-based analysis of surface ruptures along the Palu-Koro Fault (Indonesia) for long-term seismic hazard mitigation
  • Home
  • /
  • Gravity-anomaly-based analysis of surface ruptures along the Palu-Koro Fault (Indonesia) for long-term seismic hazard mitigation
  1. Home /
  2. Archives /
  3. No. 28 (2025) /
  4. Articles

Gravity-anomaly-based analysis of surface ruptures along the Palu-Koro Fault (Indonesia) for long-term seismic hazard mitigation

Authors

  • Muhammad Frando Agency for Meteorology, Climatology and Geophysics (BMKG) https://orcid.org/0009-0004-5682-3986
  • Puji Ariyanto Indonesian State College of Meteorology, Climatology, and Geophysics (STMKG), Tangerang, Indonesia https://orcid.org/0000-0001-7309-5192
  • Joshua Purba Agency for Meteorology Climatology and Geophysics (BMKG) https://orcid.org/0009-0006-7959-8288
  • Thea Monica Apriliaji Agency for Meteorology, Climatology and Geophysics (BMKG) https://orcid.org/0009-0009-7250-4252

DOI:

https://doi.org/10.12775/bgeo-2025-0006

Keywords

Palu City, Surface Rupture, Gravity Anomaly, Derived Method, Indonesia

Abstract

The Palu-Koro Fault system in Central Sulawesi is a major strike-slip fault associated with significant seismic hazards. This study investigates the fault dynamics and associated surface ruptures using gravity anomaly data and derivative-based geophysical methods. The Simple Bouguer Anomaly (SBA) values, ranging from –2 to 56 mGal, reveal substantial density contrasts in the subsurface, delineating fault boundaries and localised geological structures. Residual anomaly maps highlight sharp density gradients, which correspond to active fault zones. The derivative analyses, including First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD), further refine the fault geometry and movement mechanisms, confirming the predominantly strike-slip nature of the Palu-Koro Fault, with localised normal faulting in certain segments, particularly in pull-apart basins and fault stepovers. The identified fault structures are consistent with previously mapped surface ruptures and aftershock distributions, indicating a strong correlation between gravity-derived density contrasts and active fault segmentation. These findings offer critical insights into fault behaviour, contributing to more accurate seismic hazard assessments and disaster mitigation strategies. The results reinforce the importance of gravity-based geophysical techniques in fault characterisation and highlight their potential for integration with other geophysical datasets in seismic hazard analysis.

References

Andriamamonjisoa, S. N., & Hubert-Ferrari, A. (2019). Combining geology, geomorphology and geotechnical data for a safer urban extension: Application to the Antananarivo capital city (Madagascar). Journal of African Earth Sciences, 151. https://doi.org/10.1016/j.jafrearsci.2018.12.003

Armada, L., Dimalanta, C., Parcutela, N., Austria, R., Padrones, J., Payot, B., Queaño, K., & Yumul, G. (2020). Bouguer Anomaly of Central Cebu, Philippines. Journal of Maps, 16(2). https://doi.org/10.1080/17445647.2020.1791270

Bellier, O., Siame, L., Beaudouin, T., Villeneuve, M., & Braucher, R. (2001). High slip rate for a low seismicity along the Palu-Koro active fault in Central Sulawesi (Indonesia). Terra Nova, 13(6). https://doi.org/10.1046/j.1365-3121.2001.00382.x

Biasi, G. P., & Wesnousky, S. G. (2016). Steps and gaps in ground ruptures: Empirical bounds on rupture propagation. Bulletin of the Seismological Society of America, 106(3). https://doi.org/10.1785/0120150175

Biryol, C. B., Leahy, G. M., Zandt, G., & Beck, S. L. (2013). Imaging the shallow crust with local and regional earthquake tomography. Journal of Geophysical Research: Solid Earth, 118(5). https://doi.org/10.1002/jgrb.50115

Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. In Potential Theory in Gravity and Magnetic Applications. https://doi.org/10.1017/cbo9780511549816

BMKG. (2019). Katalog Tsunami Indonesia Tahun 416-2018. In Pusat Gempa Bumi dan Tsunami Kedeputian Bidang Geofisika. (in Indonesian).

BMKG. (2023). Katalog Gempabumi Indonesia: Relokasi Hiposenter Dan Implikasi Tektonik. In Pusat Gempa Bumi dan Tsunami Kedeputian Bidang Geofisika. (in Indonesian).

BNPB. (2019). Keusakan dan dampak bencana di sulawesi tengah [online]. Avaiable at: https://www.bnpb.go.id/kerugian-dan-kerusakan-dampak-bencana-di-sulawesi-tengah-mencapai-1382-trilyun-rupiah

Bott, M. H. P. (1962). A SIMPLE CRITERION FOR INTERPRETING NEGATIVE GRAVITY ANOMALIES. GEOPHYSICS, 27(3). https://doi.org/10.1190/1.1439026

Burger, H. R., Sheehan, A. F., & Jones, C. H. (2023). Exploration Using Gravity. In Introduction to Applied Geophysics. https://doi.org/10.1017/9781009433112.008

Chen, T., Akciz, S. O., Hudnut, K. W., Zhang, D. Z., & Stock, J. M. (2015). Fault-slip distribution of the 1999 Mw 7.1 Hector mine earthquake, California, estimated from postearthquake airborne LiDAR data. Bulletin of the Seismological Society of America, 105(2). https://doi.org/10.1785/0120130108

Cheng, Y., Allen, R. M., & Taira, T. (2023). A New Focal Mechanism Calculation Algorithm (REFOC) Using Inter-Event Relative Radiation Patterns: Application to the Earthquakes in the Parkfield Area. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022JB025006

Daryono, M. R. (2016). Paleoseismology of Tropical Indonesia (Cases study in Sumatran Fault, Palukoro-Matano Fault, and Lembang Fault) (Paleoseismologi Tropis Indonesia (Dengan Studi Kasus di Sesar Sumatra, Sesar Palukoro-Matano, dan Sesar Lembang)). In Earth Science Doctoral Programme, Institut Teknologi Bandung.

Dewanto, B. G., Priadi, R., Heliani, L. S., Natul, A. S., Yanis, M., Suhendro, I., & Julius, A. M. (2022). The 2022 Mw 6.1 Pasaman Barat, Indonesia Earthquake, Confirmed the Existence of the Talamau Segment Fault Based on Teleseismic and Satellite Gravity Data. Quaternary, 5(4). https://doi.org/10.3390/quat5040045

Du, W., & Zhang, Y. (2021). The Calculation of High-Order Vertical Derivative in Gravity Field by Tikhonov Regularization Iterative Method. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/8818552

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201. https://doi.org/10.1016/j.pepi.2012.04.002

Elkins, T. A. (1951). The second derivative method of gravity interpretation. Geophysics, 16(1). https://doi.org/10.1190/1.1437648

Eppelbaum, L., Ben-Avraham, Z., Katz, Y., Cloetingh, S., & Kaban, M. (2020). Combined Multifactor Evidence of a Giant Lower-Mantle Ring Structure below the Eastern Mediterranean. Positioning, 11(02). https://doi.org/10.4236/pos.2020.112002

Eshaghzadeh, A., Kalantari, R. sadat, & Moeini Hekmat, Z. (2015). Optimum density determination for bouguer correction using statistical methods: a case study from north of Iran. International Journal of Advanced Geosciences, 3(2). https://doi.org/10.14419/ijag.v3i2.4988

Fang, J., Xu, C., Wen, Y., Wang, S., Xu, G., Zhao, Y., & Yi, L. (2019). The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sensing, 11(11). https://doi.org/10.3390/rs11111330

Fedi, M., & Florio, G. (2001). Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49(1), 40–58. https://doi.org/https://doi.org/10.1046/j.1365-2478.2001.00235.x

Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling.

Gabo, J. A. S., Dimalanta, C. B., Yumul, G. P., Faustino-Eslava, D. v., & Imai, A. (2015). Terrane boundary geophysical signatures in Northwest Panay, Philippines: Results from gravity, seismic refraction and electrical resistivity investigations. Terrestrial, Atmospheric and Oceanic Sciences, 26(6). https://doi.org/10.3319/TAO.2015.05.11.03(TC)

Godah, W., Szelachowska, M., & Gedamu, A. A. (2024). Accuracy assessment of high and ultra high-resolution combined ggms, and recent satellite-only ggms – case studies of poland and ethiopia. Reports on Geodesy and Geoinformatics, 117(1), 38-44. https://doi.org/10.2478/rgg-2024-0005

Guglielmetti, L., & Moscariello, A. (2021). On the use of gravity data in delineating geologic features of interest for geothermal exploration in the Geneva Basin (Switzerland): prospects and limitations. Swiss Journal of Geosciences, 114(1). https://doi.org/10.1186/s00015-021-00392-8

Gunawan, B., & Permana, N. R. (2024). Estimations of the Geothermal Energy Potential in The Mount Anak Krakatau Region Based on Derivative Analysis and 3D Model of Gravitational Satellite Data. Indonesian Journal of Energy, 7(1). https://doi.org/10.33116/ije.v7i1.186

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4). https://doi.org/10.1016/S1367-9120(01)00069-4

Hiramatsu, Y., Sawada, A., Kobayashi, W., Ishida, S., & Hamada, M. (2019). Gravity gradient tensor analysis to an active fault: a case study at the Togi-gawa Nangan fault, Noto Peninsula, central Japan. Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1088-5

Hirt, C. (2010). Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. Journal of Geodesy, 84(3). https://doi.org/10.1007/s00190-009-0354-x

Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., & Rexer, M. (2013). New ultrahigh-resolution picture of Earth’s gravity field. Geophysical Research Letters, 40(16). https://doi.org/10.1002/grl.50838

Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl). https://doi.org/10.1177/8755293020951206

Khalid, P., Bajwa, A. A., Naeem, M., & Din, Z. U. (2016). Seismicity distribution and focal mechanism solution of major earthquakes of northern Pakistan. Acta Geodaetica et Geophysica, 51(3). https://doi.org/10.1007/s40328-015-0130-8

Khogali, A., Chavanidis, K., Kirmizakis, P., Stampolidis, A., & Soupios, P. (2024). Reconstruction of the subsurface of al-hassa oasis using gravity geophysical data. Applied Sciences, 14(9), 3707. https://doi.org/10.3390/app14093707

Layade, G. O., Edunjobi, H., Makinde, V., & Bada, B. (2020). Estimation of Depth to Bouguer Anomaly Sources Using Euler Deconvolution Techniques. Materials and Geoenvironment, 67(4). https://doi.org/10.2478/rmzmag-2020-0016

Lewerissa, R., Sismanto, S., Setiawan, A., & Pramumijoyo, S. (2018). The study of geological structures in suli and tulehu geothermal regions (Ambon, Indonesia) based on gravity gradient tensor data simulation and analytic signal. Geosciences (Switzerland), 8(1). https://doi.org/10.3390/geosciences8010004

Liang, Z., Wei, Z., Sun, W., & Zhuang, Q. (2021). Surface Slip Distribution and Earthquake Rupture Model of the Fuyun Fault, China, Based on High-Resolution Topographic Data. Lithosphere, 2021(Special Issue 2). https://doi.org/10.2113/2021/7913554

Mankhemthong, N., Doser, D. I., & Baker, M. R. (2012). Practical Estimation of Near-surface Bulk Density Variations Across the Border Ranges Fault System, Central Kenai Peninsula, Alaska. Journal of Environmental and Engineering Geophysics, 17(3). https://doi.org/10.2113/JEEG17.3.151

Murdapa, F., Sumanjaya, E., Fadli, D. I., Permana, N. R., Sari, A., & Purqan, A. (2024). Optimization of ggmplus gravity data to identify sumatran faults segments in kaba stratovolcano, bengkulu, revealed by fhd and svd techniques. IOP Conference Series: Earth and Environmental Science, 1418(1), 012056. https://doi.org/10.1088/1755-1315/1418/1/012056

Natawidjaja, D. H., Daryono, M. R., Prasetya, G., Udrekh, Liu, P. L. F., Hananto, N. D., Kongko, W., Triyoso, W., Puji, A. R., Meilano, I., Gunawan, E., Supendi, P., Pamumpuni, A., Irsyam, M., Faizal, L., Hidayati, S., Sapiie, B., Kusuma, M. A., & Tawil, S. (2021). The 2018 Mw7.5 Palu “supershear” earthquake ruptures geological fault’s multisegment separated by large bends: Results from integrating field measurements, LiDAR, swath bathymetry and seismic-reflection data. Geophysical Journal International, 224(2). https://doi.org/10.1093/gji/ggaa498

Parasnis, D. S., & Cook, A. H. (1952). A STUDY OF ROCK DENSITIES in the ENGLISH MIDLANDS. Geophysical Journal International, 6. https://doi.org/10.1111/j.1365-246X.1952.tb03013.x

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(4). https://doi.org/10.1029/2011JB008916

Phillips, J. D. (2015). Tools and Techniques: Gravitational Method. In Treatise on Geophysics: Second Edition (Vol. 11). https://doi.org/10.1016/B978-0-444-53802-4.00197-4

Purba, J., Harisma, H., Priadi, R., Amelia, R., Dwilyantari, A. A. I., Jaya, L. M. G., Restele, L. O., & Putra, I. M. W. G. (2024). Surface deformation and its implications for land degradation after the 2021 Flores earthquake (M7.4) using differential interferometry synthetic aperture radar. Journal of Degraded and Mining Lands Management, 12(1), 6819–6831. https://doi.org/10.15243/jdmlm.2024.121.6819

Purba, J., Restele, L. O., Hadini, L. O., Usman, I., Hasria, H., & Harisma, H. (2024). SPATIAL STUDY OF SEISMIC HAZARD USING CLASSICAL PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) METHOD IN THE KENDARI CITY AREA. Indonesian Physical Review, 7(3), 300–318. https://doi.org/10.29303/ipr.v7i3.325

PuSGeN. (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. In Pusat Litbang Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR), Jakarta. (in Indonesian).

PuSGeN. (2022). Peta Deagregasi Bahaya Gempa Indonesia Untuk Perencanaan Dan Evaluasi Infrastruktur Tahan Gempa. In Pusat Litbang Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR), Jakarta. (in Indonesian).

PuSGeN. (2024). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2024. In Pusat Litbang Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR), Jakarta. (in Indonesian).

Rao, V. B., & Satyanarayana Murty, B. v. (1973). Note on Parasnis’ method for surface rock densities. Pure and Applied Geophysics PAGEOPH, 110(1). https://doi.org/10.1007/BF00876555

Reynolds, J. M. (1997). An introduction to applied and environmental geophysics. In An introduction to applied and environmental geophysics. https://doi.org/10.1071/pvv2011n155other

Ritchie, A. S., Parasnis, D. S., & Adler, I. (1966). Methods in Geochemistry and Geophysics. Methods in Geochemistry and Geophysics, 2(C). https://doi.org/10.1016/B978-1-4832-3031-3.50001-9

Rong, Y., Bai, Y., Ren, M., Liang, M., & Wang, Z. (2023). Seismicity-based 3D model of ruptured seismogenic faults in the North-South Seismic Belt, China. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1023106

Rosid, M. S. (2023). Identification of Geological Structures in Sigi Regency, Central Sulawesi Based on Derivative Analysis of Gravity Data. International Journal of Geomate, 24(103). https://doi.org/10.21660/2023.103.3426

Rosid, M. S., & Siregar, H. (2017). Determining fault structure using first horizontal derivative (FHD) and horizontal vertical diagonal maxima (HVDM) method: A comparative study. AIP Conference Proceedings, 1862. https://doi.org/10.1063/1.4991275

Ruiyin, C., Zhu, Y., Zhang, J., Wen, A., Hu, S., Luo, J., … & Li, P. (2024). Determination of contributing area threshold and downscaling of topographic factors for small watersheds in hilly areas of purple soil. Land, 13(8), 1193. https://doi.org/10.3390/land13081193

Saibi, H., Nishijima, J., Ehara, S., & Aboud, E. (2006). Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation. Earth, Planets and Space, 58(7). https://doi.org/10.1186/BF03351986

Sarkowi, M. (2010). Identifikasi struktur daerah panasbumi ulubelu berdasarkan analisa data svd anomali bouguer. J. Sains MIPA, 16(2). (In Indonesian)

Sarkowi, M., Mulyasari, R., Darmawan, I. G. B., & Wibowo, R. C. (2022). Identification of the Semangko Fault in Sumatra, Indonesia, based on gradient gravity data analysis. Songklanakarin Journal of Science and Technology, 44(6).

Schwartz, D. P., & Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones ( USA). Journal of Geophysical Research, 89(B7). https://doi.org/10.1029/JB089iB07p05681

Sembiring, D. K., Indriana, R. D., & Yulianto, T. (2023). Subsurface Model Of Mt. Sinabung Using The GGM-Plus Satellite Gravity Data And Deconvolution Euler. International Journal of Progressive Sciences and Technologies, 39(1). https://doi.org/10.52155/ijpsat.v39.1.5375

Stanley, J. M. (1977). SIMPLIFIED GRAVITY INTERPRETATION BY GRADIENTS - THE GEOLOGICAL CONTACT. Geophysics, 42(6). https://doi.org/10.1190/1.1440787

Sukamto R. (1982). Geological Map of the Pangkajene and Western part of Watampone Quadrangles, Sulawesi, Scale 1:250,000. Geological Research and Development Centre, Bandung, Indonesia.

Sumintadireja, P., Dahrin, D., & Grandis, H. (2018). A note on the use of the second vertical derivative (SVD) of gravity data with reference to Indonesian cases. Journal of Engineering and Technological Sciences, 50(1). https://doi.org/10.5614/j.eng.technol.sci.2018.50.1.9

Sunil, P. S., Radhakrishna, M., Kurian, P. J., Murty, B. V. S., Subrahmanyam, C., Nambiar, C. G., Arts, K. P., Arun, S. K., & Mohan, S. K. (2010). Crustal structure of the western part of the Southern Granulite Terrain of Indian Peninsular Shield derived from gravity data. Journal of Asian Earth Sciences, 39(6). https://doi.org/10.1016/j.jseaes.2010.04.028

Supendi, P., Nugraha, A. D., Widiyantoro, S., Abdullah, C. I., Puspito, N. T., Palgunadi, K. H., Daryono, D., & Wiyono, S. H. (2019). Hypocenter relocation of the aftershocks of the Mw 7.5 Palu earthquake (September 28, 2018) and swarm earthquakes of Mamasa, Sulawesi, Indonesia, using the BMKG network data. Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0148-9

Supendi, P., Nugraha, A. D., Widiyantoro, S., Pesicek, J. D., Thurber, C. H., Abdullah, C. I., Daryono, D., Wiyono, S. H., Shiddiqi, H. A., & Rosalia, S. (2020). Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International, 221(3). https://doi.org/10.1093/gji/ggaa118

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Telford - Applied Geophysics. In Book.

Umar, E. P. (2023). Structural Map of Sulawesi Derives From Gravity Data and Its Implications for Geothermal Systems. E3s Web of Conferences, 468, 04004. https://doi.org/10.1051/e3sconf/202346804004

Valkaniotis, S., Ganas, A., Tsironi, V., & Barberopoulou, A. (2018). A preliminary report on the M7.5 Palu earthquake co-seismic ruptures and landslides using image correlation techniques on optical satellite data. Zenodo.

Waldhauser, F. and Schaff, D. P. (2007). Regional and teleseismic double‐difference earthquake relocation using waveform cross‐correlation and global bulletin data. Journal of Geophysical Research: Solid Earth, 112(B12). https://doi.org/10.1029/2007jb004938

Walpersdorf, A., Vigny, C., Subarya, C., & Manurung, P. (1998). Monitoring of the Palu‐Koro Fault (Sulawesi) by GPS. Geophysical Research Letters, 25(13), 2313–2316. https://doi.org/10.1029/98gl01799

Watkinson, I. M. (2011). Ductile flow in the metamorphic rocks of central Sulawesi. Geological Society Special Publication, 355. https://doi.org/10.1144/SP355.8

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin - Seismological Society of America, 84(4). https://doi.org/10.1785/bssa0840040974

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11). https://doi.org/10.1029/2019GC008515

Williams, J. N., Wedmore, L. N. J., Scholz, C. A., Kolawole, F., Wright, L. J. M., Shillington, D. J., Fagereng, Å., Biggs, J., Mdala, H., Dulanya, Z., Mphepo, F., Chindandali, P. R. N., & Werner, M. J. (2022). The Malawi Active Fault Database: An Onshore-Offshore Database for Regional Assessment of Seismic Hazard and Tectonic Evolution. Geochemistry, Geophysics, Geosystems, 23(5). https://doi.org/10.1029/2022GC010425

Xu, X. W., Yu, G. H., Ma, W. T., Klinger, Y., & Tapponnier, P. (2008). Rupture behavior and deformation localization of the Kunlunshan earthquake (Mw7.8) and their tectonic implications. Science in China, Series D: Earth Sciences, 51(10). https://doi.org/10.1007/s11430-008-0099-z

Yu, J., & Sun, D. (2022). A Lower Mantle Slab Below the East Asia Margin Constrained by Seismic Waveform Complexity. Journal of Geophysical Research: Solid Earth, 127(6). https://doi.org/10.1029/2022JB024246

Bulletin of Geography. Physical Geography Series

Downloads

  • PDF

Published

2025-06-26

How to Cite

1.
FRANDO, Muhammad, ARIYANTO, Puji, PURBA, Joshua and THEA MONICA APRILIAJI. Gravity-anomaly-based analysis of surface ruptures along the Palu-Koro Fault (Indonesia) for long-term seismic hazard mitigation. Bulletin of Geography. Physical Geography Series. Online. 26 June 2025. No. 28, pp. 81-101. [Accessed 12 December 2025]. DOI 10.12775/bgeo-2025-0006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 28 (2025)

Section

Articles

License

Copyright (c) 2025 Muhammad Frando, Puji Ariyanto, Joshua Purba, Thea Monica Apriliaji

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1145
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Palu City, Surface Rupture, Gravity Anomaly, Derived Method, Indonesia
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop