Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Assessing seafloor morphological changes of offshore islands based on bathymetry using Sentinel-2 images: a case study in the Truong Sa Islands (Vietnam)
  • Home
  • /
  • Assessing seafloor morphological changes of offshore islands based on bathymetry using Sentinel-2 images: a case study in the Truong Sa Islands (Vietnam)
  1. Home /
  2. Archives /
  3. No. 29 (2025) /
  4. Articles

Assessing seafloor morphological changes of offshore islands based on bathymetry using Sentinel-2 images: a case study in the Truong Sa Islands (Vietnam)

Authors

  • Le Hung Trinh Le Quy Don Technical University https://orcid.org/0000-0002-2403-063X

DOI:

https://doi.org/10.12775/bgeo-2025-0007

Keywords

seafloor morphological, bathymetry, Sentinel-2, Truong Sa islands, Vietnam

Abstract

Assessing seafloor morphological changes plays a crucial role in understanding environmental processes, helping to predict changes in marine ecosystems, protect natural resources, and support sustainable management of marine areas. This study proposes an effective and accurate method for assessing seafloor morphological changes using Sentinel-2 satellite data. The research focuses on analyzing depth and topographic features of offshore islands, with the study area extending 9 km in length and 1.8 km in width, including a semi-enclosed lagoon with depths ranging from 3 to 6 meters. The images were collected at three time points: January 14, 2020; June 5, 2020; and June 15, 2021. Surface reflectance images from the blue and green bands were used to estimate bathymetry. Additionally, the study utilized the Random Forest algorithm on the GEE platform to classify the objects of interest. The results show an increase in the average depth of submarine sand from 2.07 m to 2.17 m, while coral showed a change from 0.96 m to 2.20 m. Coral sand floor and substrate grass also exhibited significant changes in depth, with coral sand floor decreasing from 9.45 m to 6.08 m and substrate grass decreasing from 8.04 m to 6.15 m. Objects such as solid bottom and seagrass maintained stable depths with minor variations. Moreover, field data and tide measurements were used to validate and adjust the bathymetric models, enhancing the accuracy of the estimates.

References

ALMAR R, BERGSMA EW, THOUMYRE G, SOLANGE LC, LOYER S, ARTIGUES S and LIFERMANN A, 2024, Satellite-derived bathymetry from correlation of Sentinel-2 spectral bands to derive wave kinematics: Qualification of Sentinel-2 S2Shores estimates with hydrographic standards. Coastal Engineering, 189: 104458. DOI: https://doi.org/10.1016/j.coastaleng.2024.104458.

ANDREASSEN K, LABERG JS and VORREN TO, 2008, Seafloor geomorphology of the SW Barents Sea and its glaci-dynamic implications. Geomorphology 97(1-2): 157-177. DOI: https://doi.org/10.1016/j.geomorph.2007.02.050.

BREIMAN L, 2001, Random Forests. Machine Learning 45: 5–32. DOI: https://doi.org/10.1023/A:1010933404324.

EUROPEAN SPACE AGENCY, 2024, Available at: https://sentinel.esa.int/web/sentinel/copernicus/sentinel-2 (Accessed 20 December 2024).

GOOGLE EARTH ENGINE. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available at: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED (Accessed 31 December 2024)..

HARIRAM V, 2024, Bathymetry, the future potential of ocean mapping, and the seafloor revolution. Available at SSRN 4977191.

KWON JY, SHIN HK, KIM DH, LEE HG, BOUK JK, KIM JH and KIM TH, 2024, Estimation of shallow bathymetry using Sentinel-2 satellite data and random forest machine learning: a case study for Cheonsuman, Hallim, and Samcheok Coastal Seas. Journal of Applied Remote Sensing 18(1): 014522-014522. DOI: https://doi.org/10.1117/1.JRS.18.014522.

LI J, KNAPP DE, SCHILL SR, ROELFSEMA C, PHINN S, SILMAN M, MASCARO J and ASNER GP, 2019, Adaptive Bathymetry Estimation for Shallow Coastal Waters Using Planet Dove Satellites. Journal of Applied Remote Sensing 18(1): 014522-014522. DOI: https://doi.org/10.1016/j.rse.2019.111302.

LI J, KNAPP DE, LYONS M, ROELFSEMA C, PHINN S, SCHILL SR and ASNER GP, 2021, Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sensing 13(8): 1469. DOI: https://doi.org/10.3390/rs13081469.

LINKLATER M, INGLETON TC, KINSELA MA, MORRIS BD, ALLEN KM, SUTHERLAND MD and HANSLOW DJ, 2019, Techniques for classifying seabed morphology and composition on a subtropical-temperate continental shelf. Geosciences 9(3): 141. DOI: https://doi.org/10.3390/geosciences9030141.

LOUREIRO G, DIAS A, ALMEIDA J, MARTINS A, HONG S and SILVA E, 2024, A Survey of Seafloor Characterization and Mapping Techniques. Remote Sensing 16(7): 1163. DOI: https://doi.org/10.3390/rs16071163.

MATEO-PÉREZ V, CORRAL-BOBADILLA M, ORTEGA-FERNÁNDEZ F and VERGARA-GONZÁLEZ EP, 2020, Port bathymetry mapping using support vector machine technique and sentinel-2 satellite imagery. Remote sensing 12(13): 2069. DOI: https://doi.org/10.3390/rs12132069.

MCFEETERS SK, 1996, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7): 1425–1432. DOI: https://doi. org/10.1080/01431169608948714.

MERCHANT MA, 2023, Modelling inland Arctic bathymetry from space using cloud-based machine learning and Sentinel-2. Advances in Space Research 72(10): 4256-4271.

MUDIYANSELAGE SSJD, ABD-ELRAHMAN A, WILKINSON B and LECOURS V, 2022, Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GIScience & Remote Sensing 59(1): 1143-1158. DOI: https://doi.org/10.1080/15481603.2022.2100597.

NGUYEN NH and PHU LV, 2023, Bathymetric mapping of Co To island area, Quang Ninh province using sentinel-2 and landsat 8 images. Journal of Science and Technique-Section on Special Construction Engineering 6(01). DOI: https://doi.org/10.56651/lqdtu.jst.v6.n01.663.sce.

PELLETIER BR, 1986, Seafloor morphology and sediments. Canadian Inland Seas 44: 143-162.

RICHARDSON G, FOREMAN N, KNUDBY A, WU Y and LIN Y, 2024, Global deep learning model for delineation of optically shallow and optically deep water in Sentinel-2 imagery. Remote Sensing of Environment 311: 114302. DOI: https://doi.org/10.1016/j.rse.2024.114302.

ROCA M, NAVARRO G, GARCÍA-SANABRIA J and CABALLERO I, 2022, Monitoring sand spit variability using Sentinel-2 and Google Earth Engine in a Mediterranean estuary. Remote Sensing 14(10): 2345. DOI: https://doi.org/10.3390/rs14102345.

ROOS PC and HULSCHER SJ, 2003, Large‐scale seabed dynamics in offshore morphology: Modeling human intervention. Reviews of geophysics 41(2): 1-21. DOI: https://doi.org/10.1029/2002RG000120.

SKLAR E, BUSHUEV E, MISIUK B, LABBÉ-MORISSETTE G and BROWN CJ, 2024, Seafloor morphology and substrate mapping in the Gulf of St Lawrence, Canada, using machine learning approaches. Frontiers in Marine Science 11: 1306396.

STUMPF RP, HOLDERIED K and SINCLAIR M, 2003, Determination of Water Depth with High-Resolution Satellite Imagery Over Variable Bottom Types. Limnology and Oceanography 48(1): 547–556.

THE EUROPEAN SPACE AGENCY (ESA), 2013, Sentinel-2 User Handbook. (Accessed 31 December 2024).

THE EUROPEAN SPACE AGENCY (ESA), Sentinel Online. Available at: https://sentinel.esa.int/ (Accessed 31 December 2024).

TRAGANOS D, POURSANIDIS D, AGGARWAL B, CHRYSOULAKIS N and REINARTZ P, 2018, Estimating Satellite-Derived Bathymetry with the Google Earth Engine and Sentinel-2. Remote Sensing 10(6): 859. DOI: https://doi.org/10.3390/rs10060859.

VARDAR D, ERTURAÇ K, ÖZCAN O and GAZIOĞLU C, 2024, Nearshore Seafloor Depositions and Deformations at Paleo-Glacier Active Area revealed from side scan sonar data, case study from Horseshoe Island, Western Antarctica. EGUsphere 2024: 1-20.

XU W, JIANG Z, GUO Y, JI X, GUO Z, LIU Y and XIAO X, 2024, Registration of airborne LiDAR bathymetry seafloor point clouds based on the adaptive matching of corresponding points. IEEE Geoscience and Remote Sensing Letters 21: 1-5. DOI: 10.1109/LGRS.2024.3366416.

ZHAO J, BARNES B, MELO N, ENGLISH D, LAPOINTE B, MULLER-KARGER F, SCHAEFFER B and HU C, 2013, Assessment of Satellite-Derived Diffuse Attenuation Coefficients and Euphotic Depths in South Florida Coastal Waters. Remote Sensing of Environment 131: 38–50. DOI: https://doi.org/10.1016/j.rse.2012.12.009.

Downloads

  • PDF

Published

2025-08-21

How to Cite

1.
TRINH, Le Hung. Assessing seafloor morphological changes of offshore islands based on bathymetry using Sentinel-2 images: a case study in the Truong Sa Islands (Vietnam). Bulletin of Geography. Physical Geography Series. Online. 21 August 2025. No. 29. [Accessed 24 November 2025]. DOI 10.12775/bgeo-2025-0007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 29 (2025)

Section

Articles

License

Copyright (c) 2025 Le Hung Trinh

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 247
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

seafloor morphological, bathymetry, Sentinel-2, Truong Sa islands, Vietnam
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop