Genetic map of the Wielka Żuława soil cover: blanks to be filled using existing cartographic materials and remote-sensing data
DOI:
https://doi.org/10.12775/bgeo-2024-0011Keywords
LIDAR data, orthophotomosaic, soil cartography, Polish Soil Classification, World Reference Base for Soil ResourcesAbstract
Poland is considered to have a very well mapped soil cover and detailed soil cartographic materials. Despite this, some areas have “blank spots” on soil-agricultural or soil-habitat maps. These include the Wielka Żuława island on Jeziorak Lake (on the Iława Plain). This island is almost deserted and inaccessible, making detailed field research there very difficult. The aim of the work was to check the possibility of using existing cartographic materials and remote-sensing data to develop a genetic map of the soils of this area. In order to interpret the existing materials, preliminary field works were carried out: six soil pits and 22 manual drillings to an average depth of 2 m. These studies showed significant diversity of soil cover. The largest share within the central, upland part of the island have autogenous rusty soils (Brunic Arenosols according to the World Reference Base [WRB]) and clay-illuvial soils (Luvisols – WRB). The lower locations (mainly along the coast of the island) were dominated by organic soils (Histosols – WRB). The digital elevation model (DEM) enables precise determination of the boundary between THE mentioned autogenous and hydrogenic soils. In the group of organic pedons, a large area was degraded, which was expressed by the occurrence of murshic soils (Murshic Histosols – WRB). The DEM obtained from LiDAR data shows networks of (almost invisible in aerial photos) drainage ditches and channels, which turned out to be very useful in determining the extent of the mentioned degradation. The greatest difficulties concerned the extent of soil developed as a result of human influence – colluvial (Solimovic Arenosols) and anthropogenic soils. In the first case, a relief model combined with archival orthophotomosaics allowed for an approximate estimation of the places where these soils occur. Both elements (DEM and archival aerial photos) were also used to estimate the extent of occurrence of technogenic soils (Technosols – WRB).
References
AKAMIGBO FOR, IGWE CA and ORANEKWULU SC, 1994, Soil variability in map units delineated by aerial photo-interpretation: a case study in Anambra State, Nigeria. Soil Use and Management 10: 6–8. DOI: https://doi.org/10.1111/j.1475-2743.1994.tb00449.x.
BAURLEY NR, TOMSETT C and HART JK, 2022, Assessing UAV-based laser scanning for monitoring glacial processes and interactions at high spatial and temporal resolutions. Frontiers in Remote Sensing, 3: 1027065.
BIAŁOUSZ S, 1978, Zastosowanie fotointerpretacji do wykonywania map stosunków wodnych gleb. PTG, Prace Komisji Naukowych 35: 1–143.
BIAŁOUSZ S, MIROSZ K and SIMLA M, 1978, Wpływ wilgotności gleby na zróżnicowanie tonu zdjęcia lotniczego. Fotointerpretacja w geografii 12: 111–116.
BURINGH P, 1970, Introduction to the study of soils in tropical and subtropical regions. PUDOC, Wageningen.
DE FEUDIS M, FALSONE G, GHERARDI M, SPERANZA M, VIANELLO G and ANTISARI LV, 2021, GIS-based soil maps as tools to evaluate land capability and suitability in a coastal reclaimed area (Ravenna, northern Italy). International Soil and Water Conservation Research 9(2): 167–179.
DOMLIJA P, GAZIBARA SB, ARBANAS Ž and ARBANAS SM, 2019, Identification and Mapping of Soil Erosion Processes Using the Visual Interpretation of LiDAR Imagery. ISPRS International Journal of Geo-Information 8(10): 438. DOI: https://doi.org/10.3390/ijgi8100438.
GUNAY CJC, MAGCALE-MACANDOG DB and BRAGAIS MA, 2019, Assessing soil erosion and flood risk areas in Santa Rosa-Silang Watershed using LiDAR data and SWAT modeling. Sylvatrop, The Technical Journal of Philippine Ecosystems and Natural Resources 29, (2): 23–38.
GEVAERT CM, SUOMALAINEN J, TANG J and KOOISTRA L, 2015, Generation of Spectral-Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth Observations 8: 3140–3146.
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC), 2006, IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Egglestone HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds), Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES. Hayama, Japan.
IUSS WORKING GROUP WRB, 2022, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS). Vienna, Austria.
JONG-TAE K, JUNG-HYUN K, CHANG-HUN L, SEONG-CHEOL P, CHANG-JU L and GYO-CHEOL J, 2023, Monitoring Landcreep Using Terrestrial LiDAR and UAVs. The Journal of Engineering Geology 33(1): 27–37.
KABAŁA C, CHARZYŃSKI P, CHODOROWSKI J, DREWNIK M, GLINA B, GREINERT A, HULISZ P, JANKOWSKI M, JONCZAK J, ŁABAZ B, ŁACHACZ A, MARZEC M, MENDYK Ł, MUSIAŁ P, MUSIELOK Ł, SMRECZAK B, SOWIŃSKI P, ŚWITONIAK M, UZAROWICZ Ł and WAROSZEWSKI J, 2019, Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2): 71–97. DOI: https://doi.org/10.2478/ssa-2019-0009.
KOBIERSKI M, 2013, Morphology, properties and mineralogical composition of eroded Luvisols in selected morainic areas of the Kujavian and Pomeranian Province. University of Technology and Life Sciences, Bydgoszcz.
KOTTEK M, GRIESER J, BECK C, RUDOLF B and RUBEL F, 2006, World Map of Köppen-Geiger Climate Classification updated. Meteorologische Zeitschrift 15(3): 259-263.
MALIK RP, SHANWAL AV and IYER HS, 1984, Identification and delineation of saline soils using aerial photographs in Yamuna Alluvial plain, Haryana. Journal of the Indian Society of Photo-Interpretation and Remote Sensing 12: 59–64. DOI: https://doi.org/10.1007/BF02991438.
MARKS L, 2012, Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44: 81–88.
MATECKA P and ŚWITONIAK M, 2020, Delineation, characteristic and classification of soils containing carbonates in plow horizons within young moraine areas. Soil Science Annual 71(1): 23–36. DOI: https://doi.org/10.37501/soilsa/121489.
OKRUSZKO H, 1976, Effect of land reclamation on organic soils in Poland’s conditions. Zeszyty Problemowe Postępów Nauk Rolniczych 177: 159–204.
OKRUSZKO H, 1993, Transformation of fen-peat soils under the impact of draining. Zeszyty problemowe postępów nauk rolniczych 406: 3–73.
PHILLIPS JD, SLATTERY MC and GARES P A, 1999. Truncation and accretion of soil profiles on coastal plain croplands: implications for sediment redistribution. Geomorphology 28(1): 119–140. DOI: https://doi.org/10.1016/S0169-555X(98)00105-6.
PIAŚCIK H and GOTKIEWICZ J, 1995, Degradation processes on the drained peatlands of the post-glacial areas. Zeszyty problemowe postępów nauk rolniczych 418: 185–190.
PODLASIŃSKI M, 2013, Denudation of anthropogenic impact on the diversity of soil cover and its spatial structure in the agricultural landscape of moraine. Szczecin.
POLSKIE STOWARZYSZENIE KLASYFIKATORÓW GRUNTÓW, 2020, Szczegółowe zasady przeprowadzania gleboznawczej klasyfikacji gruntów. Puławy – Warszawa.
POLISH SOIL CLASSIFICATION, 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa.
RADZIUK H and ŚWITONIAK M, 2022, The Effect of Erosional Transformation of Soil Cover on the Stability of Soil Aggregates within Young Hummocky Moraine Landscapes in Northern Poland. Agronomy 12(11): 2595. DOI: https://doi.org/10.3390/agronomy12112595.
REDDY AD, HAWBAKER TJ, WURSTER F, ZHU Z, WARD S, NEWCOMB D and MURRAY R, 2015, Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. Remote Sensing of Environment 170: 306–316.
ROGUSKI W, 1980, Przemiany gleb organicznych w Dolinie Noteci w wyniku wieloletniego użytkowania rolniczego i ich właściwości fizyczno-wodne. Roczniki gleboznawcze 31(3/4): 109–115.
SABOL J, PATOČKA Z and MIKITA T, 2014, Usage of LiDAR data for leaf area index estimation. GeoScience Engineering 60(3): 10–18.
SINGH D, HERLIN I, BERROIR JP, SILVA EF and SIMOES MEIRELLES M, 2004, An approach to correlate NDVI with soil colour for erosion process using NOAA/AVHRR data. Advances in Space Research 33(3): 328–332.
SINKIEWICZ M, 1998, The development of anthropogenic denudation in central part of northern Poland. Nicolaus Copernicus University, Toruń.
SOLAZZO D, SANKEY JB, SANKEY TT and MUNSON SM, 2018, Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology 319: 174–185.
ŚWITONIAK M, 2006, Different pedogenesis conditioned by lithology of texture-contrast soils in Brodnica Lake District. In: Gierszewski P, Karasiewicz M (eds), Ideas and practical universalism of geography. Geographical documentation 32: 278–285.
ŚWITONIAK M, 2007, Ocena wartości ekologicznej gleb o dwudzielnym uziarnieniu w aspekcie zrównoważonego gospodarowania obszarami leśnymi Brodnickiego Parku Krajobrazowego. In: Marszelewski W, Kozłowski L (eds), Ochrona i zagospodarowanie Drwęcy. Vol. 1. Toruń, 335–344.
ŚWITONIAK M, 2014, Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116: 173–184.
ŚWITONIAK M, 2015, Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual 66(2): 57–66.
ŚWITONIAK M, MARKIEWICZ M, BEDNAREK R and PALUSZEWSKI B, 2013, Application of aerial photographs for the assessment of anthropogenic denudation impact on soil cover of the Brodnica Landscape Park plateau areas. Ecological Questions 17: 101–111.
ŚWITONIAK M, MROCZEK P and BEDNAREK R, 2016, Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes — Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena 137: 583–595.
TOMCZYK A and BEDNORZ E, 2022. Atlas klimatu Polski (1991-2020). Bogucki Wydawnictwo Naukowe.
ZÁDOROVÁ T, PENÍŽEK V, KOUBOVÁ M, LISÁ L, PAVLŮ L, TEJNECKÝ V, ŽIŽALA D, DRÁBEK O, NĚMEČEK K, VANĚK A and KODEŠOVÁ R, 2023, Formation of Colluvisols in different soil regions and slope positions (Czechia): Post-sedimentary pedogenesis in colluvial material. Catena 229: 107233. DOI: https://doi.org/10.1016/j.catena.2023.107233.
ŽÍŽALA D, JUŘICOVÁ A, ZÁDOROVÁ T, ZELENKOVÁ K and MINAŘÍK R, 2019, Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52(1): 108–122. DOI: https://doi.org/10.1080/22797254.2018.1482524.
ZHOU J, XU Y, GU X, CHEN T, SUN Q ZHANG S and PAN Y, 2023, High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 7: 290. DOI: https://doi.org/10.3390/drones7050290.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marcin Świtoniak, Marcin Sykuła, Maciej Markiewicz, Julia Dziczek, Paweł Radomski
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 63
Number of citations: 0