Mobile systems for assessing air quality: available solutions and application examples
DOI:
https://doi.org/10.12775/bgeo-2024-0007Keywords
air pollution, mobile system, UAV, Sniffer4D, Nosacz II, AirDroneAbstract
Air quality is of interest to many institutions and individuals, including, above all, the informed residents of monitored areas. The state of the air and its pollution level are very important to the health, life and functioning of any community living in urban areas. A poor state of the environment has inevitable health consequences; in the case of the air, these are mainly respiratory or cardiovascular diseases. This element intensifies during the heating season when compounds from the combustion of banned substances and materials are emitted into the atmosphere. The quality of the lowest layer of the atmosphere can be studied using various recording systems and detectors. These include continuous monitoring of the state of the air by spatially dispersed stationary measuring stations operating in the State Environmental Monitoring system. Their location is usually associated with significant traffic intensity in their immediate vicinity rather than high local residential density. The measurement network is also co-created and densified by alternative point air-quality-monitoring systems proposed by private companies or community organizations (e.g., Airly, Sensor.Community, LoVo). A precious source of reliable local air quality data is mobile recording systems, which use unmanned aircraft or vehicles – objects in motion – and carry out periodic inspections, control missions or measurements. Examples of such solutions in the Polish market are Sniffer4D, Nosacz II and AirDrone. This paper aims to analyze and compare the available mobile measurement systems in terms of technical and usability for air quality research, along with a description of example areas where they are being used and implemented in practice. In addition, selected results of tests carried out with the Sniffer4D system at three testing grounds in Toruń are presented as part of a measurement campaign using an unmanned aerial vehicle and a passenger car.
References
ANJOMSHOAA A, DUARTE F, RENNINGS D, MATARAZZO TJ, DESOUZA P and RATTI C, 2018, City Scanner: Building and Scheduling a Mobile Sensing Platform for Smart City Services. IEEE Internet of Things Journal 5(6): 4567–4579. DOI: https://doi.org/10.1109/JIOT.2018.2839058.
BECMER D and ROMANEK A, 2011, Bezzałogowe Platformy Latające, Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. Tadeusza Kościuszki. Instytut Dowodzenia, Wrocław.
BUCEK P, MARŠOLEK P and BÍLEK J, 2021, Low-Cost Sensors for Air Quality Monitoring – the Current State of the Technology and a Use Overview. Chemistry-Didactics-Ecology-Metrology 26: 41–54. DOI: https://doi.org/10.2478/cdem-2021-0003.
CASTELL N, DAUGE FR, SCHNEIDER P, VOGT M, LERNER U, FISHBAIN B, BRODAY D and BARTONOVA A, 2017, Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International 99: 293–302. DOI: https://doi.org/10.1016/j.envint.2016.12.007.
CHAMOLA V, KOTESH P, AGARWAL A, NAREN, GUPTA N and GUIZANI M, 2021, A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Networks 111: 102324. DOI: https://doi.org/10.1016/j.adhoc.2020.102324.
Dron Obywatelski. (2024). Bezpłatny Tyski Tygodnik Miejski 6(846): 4.
Drony ponownie sprawdziły jakość powietrza w Lidzbarku. (2021). Bezpłatny biuletyn dla mieszkańców Miasta i Gminy Lidzbark 10(68): 2.
DURŁO G, 2021, Analiza jakości powietrza w Krakowie przy użyciu głowicy pomiarowej SoftBlue AirDron. Available at: https://navigate.pl/blog/analiza-jakosci-powietrza-w-krakowie/ (accessed: 18.07.2024).
DYVAK M, ROT A, PASICHNYK R, TYMCHYSHYN V, HULIIEV N and MASLYIAK Y, 2021, Monitoring and Mathematical Modeling of Soil and Groundwater Contamination by Harmful Emissions of Nitrogen Dioxide from Motor Vehicles. Sustainability 13: 2768. DOI: https://doi.org/10.3390/su13052768.
ERICKSON L, GRISWOLD W, MAGHIRANG R and URBASZEWSKI B, 2017, Air Quality, Health and Community Action. Journal of Environmental Protection 8(10): 1057-1074..
ERWIŃSKI K, KARPIŃSKA D, KUNZ M, PAPROCKI M and CZOKOW J, 2023. An Autonomous City-Wide Light Pollution Measurement Network System Using LoRa Wireless Communication. Sensors 23(11): 5084. DOI: https://doi.org/10.3390/s23115084.
GODFREY I, AVARD G, BRENES JPS, CRUZ MM and MEGHRAOUI K, 2023, Using Sniffer4D and SnifferV portable gas detectors for UAS monitoring of degassing at the Turrialba Volcano Costa Rica. Advanced UAV 3(1): 54–90.
GODFREY I, SIBAJA BRENES JP, MARTÍNEZ CRUZ M and MEGHRAOUI K, 2022, Using UAS with Sniffer4D payload to document volcanic gas emissions for volcanic surveillance. Advanced UAV 2(2): 86–99.
GODŁOWSKA J, 2019, Wpływ warunków meteorologicznych na jakość powietrza w Krakowie. IMGW-PIB, Warszawa.
GUCMA L and MUCZYŃSKI B, 2022, Walidacja projektu PASSport w Porcie Kołobrzeg. Akademickie Aktualności Morskie 4(116): 2–7.
JĘDRAK J, KONDURACKA E, BADYDA A and DĄBROWIECKI P, 2017, Wpływ zanieczyszczeń powietrza na zdrowie. Stowarzyszenie Krakowski Alarm Smogowy, Kraków.
JĘDRZEJEK F, GRYBOŚ D, ZYŚK J, LESZCZYŃSKI J, SZARŁOWICZ K, STOBIŃSKI M, KUBICA B and SUWAŁA W, 2021, The Innovative Method of Purifying Polluted Air in the Region of an Inversion Layer. Frontiers in Environmental Science 9: 784477. DOI: https://doi.org/10.3389/fenvs.2021.784477.
JOŃCA J, PAWNUK M, BEZYK Y and ARSEN A, 2022, Drone-Assisted Monitoring of Atmospheric Pollution. A Comprehensive Review. Sustainability 14(18): 11516. DOI: https://doi.org/10.3390/su141811516.
KIM M-K, JANG Y, HEO J and PARK D, 2021, A UAV-Based Air Quality Evaluation Method for Determining Fugitive Emissions from a Quarry during the Railroad Life Cycle. Sensors 21(9): 3206. DOI: https://doi.org/10.3390/s21093206.
KONERT A and SAKOWSKA-BARYŁA M, 2020, Prawne uregulowania w zakresie używania bezzałogowych statków powietrznych przez media. International Journal of Legal Studies 8(2): 47–74. DOI: https://doi.org/10.5604/01.3001.0014.6359.
KARPIŃSKA D and KUNZ M, 2019, Light pollution in the night sky of Toruń in the summer season. Bulletin of Geography. Physical Geography Series 17: 91–10. DOI: https://doi.org/10.2478/bgeo-2019-0017.
KARPIŃSKA D and KUNZ M, 2021, The Analysis of the visibility and signal strength of the LoRaWAN network in an urbanized area: A case study of the Bielany campus at the Nicolaus Copernicus University in Toruń. Bulletin of Geography. Socio-economic Series 54: 137–149. DOI: https://doi.org/10.2478/bog-2021-0039.
KARPIŃSKA D and KUNZ M, 2022, Device for automatic measurement of light pollution of the night sky. Scientific Reports 12(1): 1–12. DOI: https://doi.org/10.1038/s41598-022-20624-7.
KARPIŃSKA D and KUNZ M, 2023, Vertical Variability of Night Sky Brightness in Urbanised Areas. Quaestiones Geographicae 42(1): 5–14. DOI: https:/doi.org/10.14746/quageo-2023-0001.
KRAJEWSKA-KUŁAK E, ROLKA H, ŁUKASZUK C and MAKAROWSKI T, 2007, Wpływ powietrza na zdrowie człowieka. In: Krajewska-Kułak E. (ed.) Problemy terapeutyczno-pielęgnacyjne od poczęcia do starości 2: 234–242.
MALEC A and BOROWSKI G, 2016, Zagrożenia pyłowe oraz monitoring powietrza atmosferycznego. Inżynieria Ekologiczna 50: 161–170. DOI: https://doi.org/10.12912/23920629/65489.
MANISALIDIS I, STAVROPOULOU E, STAVROPOULOS A and BEZIRTZOGLOU E, 2000, Environmental and health impacts of air pollution: a review. Frontiers in Public Health 8(14).
MOTLAGH NH, KORTOCI P, SU X, LOVEN L, HOEL HK, HAUGSVAER SB, SRIVASTAVA V, GULBRANDSEN CF, NURMI P and TARKOMA S, 2023, Unmanned Aerial Vehicles for Air Pollution Monitoring: A survey. IEEE Internet of Things Journal 10 (24): 21687–21704. DOI: https://doi.org/10.1109/JIOT.2023.3290508.
PARCZEWSKI R. 2023, Bezzałogowe statki powietrzne w bezpieczeństwie ekologicznym Polski na przykładzie województwa lubelskiego. Wydawnictwo WAT, Warszawa.
Raport o stanie miasta i gminy Września za 2018 rok.
Raport o stanie miasta i gminy Września za 2019 rok.
Raport o stanie miasta i gminy Września za 2020 rok.
Raport o stanie miasta i gminy Pruszcz Gdański za 2020 rok.
Raport o stanie miasta i gminy Biskupiec za 2021 rok.
SALA S and ZINKO I, 2010, Wybrane problemy zanieczyszczeń powietrza. Rocznik Świętokrzyski. Seria B – Nauki Przyrodnicze 31: 73–84.
SENARATHNA M, PRIYANKARA S, JAYARATNE R, WEERASOORIYA R, MORAWSKA L and BOWATTE G, 2022, Measuring Traffic Related Air Pollution Using Smart Sensors In Sri Lanka: Before And During A New Traffic Plan. Geography, Environment, Sustainability 15(3): 27–36. DOI: https://doi.org/10.24057/2071-9388-2022-011.
SKOCZKO I, SZATYŁOWICZ E, ZAGÓRSKA M, ROSZKOWSKA W, SKOWROŃSKA I, ZAMBRZYCKA A and DĄBROWSKA K, 2018, Ocena jakości powietrza w Polsce. Inżynieria Środowiska – Młodym Okiem 37: 127–148.
SLADOJEVIC S, ARSENOVIC M, NIKOLIĆ D, ANDERLA A and STEFANOVIĆ D, 2024, Advancements in Mobile-Based Air Pollution Detection: From Literature Review to Practical Implementation. Journal of Sensors 4: 1–17. DOI: https://doi.org/10.1155/2024/4895068.
Sniffer4D V2 Multi-gas Detection & Mapping System – Components & Specs, 2023.
SNYDER EG, WATKINS TH, SOLOMON PA, THOMA ED, WILLIAMS RW, HAGLER GS, SHELOW D, HINDIN DA, KILARU VJ and PREUSS PW, 2013, The changing paradigm of air pollution monitoring. Environmental Science & Technology 47(20): 11369–11377. DOI: https://doi.org/10.1021/es4022602.
STITH L, 2023, What Is IoT Based Air Pollution Monitoring. Available at: https://robots.net/tech/what-is-iot-based-air-pollution-monitoring/ (Access 12.07.2024).
SUMARA M, 2018, Propozycje rozwiązań związanych z ograniczeniem niskiej emisji wynikających z uchwały antysmogowej w kontekście podejmowanych działań kontrolnych przez funkcjonariuszy Straży Miejskiej w Katowicach. [In:] Nawrot F and Radecka E (eds.), Prawne instrumenty ochrony powietrza. INFOMAX, Katowice: 108–123.
TOMALA M, 2023, Monitorowanie jakości powietrza w Polsce w świetle koncepcji smart city. Środkowoeuropejskie Studia Polityczne 1: 45–70. DOI: https://doi.org/10.14746/ssp.2023.1.3.
VELASCO A, FERRERO R, GANDINO F, MONTRUCCHIO B and REBAUDENGO M, 2016, A Mobile and Low-Cost System for Environmental Monitoring: A Case Study. Sensors 16(5): 710. DOI: https://doi.org/10.3390/s16050710.
VILLA TF, GONZALEZ F, MILIJEVIC B, RISTOVSKI ZD and MORAWSKA L, 2016a, An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors 16(7): 1072–1072. DOI: https://doi.org/10.3390/s16071072.
VILLA TF, SALIMI F, MORTON K, MORAWSKA L and GONZALEZ F, 2016b, Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors 16(12): 2202. DOI: https://doi.org/10.3390/s16122202.
ZBORALSKI D and KUNZ M, 2024, Optymalizacja kampanii pomiarowej dotyczącej jakości powietrza z wykorzystaniem mobilnego systemu rejestrującego Sniffer4D. In: Młynarczyk A. (ed.) Środowisko przyrodnicze jako obszar badań 6, Bogucki Wydawnictwo Naukowe.
Internet sources
https://airly.org/map/pl/ (Access 16.07.2024).
https://airly.org/pl/funkcjonalnosci/sensor-jakosci-powietrza/ (Access 16.07.2024).
https://dron.edu.pl/pogromcy-smogu-i-dron/ (Access 11.07.2024).
https://powietrze.gios.gov.pl/pjp/content/annual_assessment_air_acceptable_level (Access 15.07.2024).
https://powietrze.gios.gov.pl/pjp/content/measuring_air_assessment_measurings (Access 15.07.2024).
https://powietrze.gios.gov.pl/pjp/maps/measuringstation (Access 15.07.2024).
https://sensor.community/pl/ (Access 16.07.2024).
https://softblue.pl/produkty/eco-solutions/airdron/ (Access 07.07.2024).
https://www.gov.pl/web/kppsp-bialogard/strazacy-w-profilaktyce-antysmogowej (Access 10.07.2024).
https://www.lovo.pl/iot/system-do-monitorowania-jakosci-powietrza/ (Access 17.07.2024).
https://www.soarability.com (Access: 08.07.2024).
https://www.wzp.pl/biuro-prasowe/biuro-prasowe/aktualnosci/dron-nad-kominami-w-szesciu-zachodniopomorskich-miastach-pierwsze-zolte-kartki-dla-palacych (Access 09.07.2024).
https://zycie.nastyku.pl/artykul/pierwszy-raport-z-badania-jakosci-powietrza-w-zgorzelcu,3329,1,fdb0d.html (Access 09.07.2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dominik Zboralski, Mieczysław Kunz
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 269
Number of citations: 0