Large-scale bedforms in the vicinity of Serwy Lake (NE Poland): their morphometry and links to the high-energy glaciofluvial environment
DOI:
https://doi.org/10.12775/bgeo-2024-0004Keywords
glacier lake-outburst floods, outwash, geomorphometry, subaqueous megadunes, Weichselian glaciationAbstract
The Suwałki Glacial Megaflood Landsystem documented in NE Poland led to further morphological analysis of bedforms that originated from glacial lake-outburst floods (GLOFs) in the central and eastern parts of the Augustów Plain. This article focuses on (1) the recognition of large-scale subaqueous dunes in the vicinity of Serwy Lake, (2) the creation of a database consisting of relevant morphometric parameters (lengths, heights and gradients of stoss and lee slopes) and indexes (steepness and asymmetry ratios) and (3) comparison with other landforms that undoubtably indicate glacial floods (e.g., Missoula, Altai, British Columbia, Wigry Lake). The remote identification and measurement of the megadunes’ morphometry based on LiDAR data and digital elevation model with resolution 1×1 m (using hillshade and geomorphons) yielded data characterising 254 bedforms. These represent two-dimensional large-scale subaqueous dunes, which have lengths varying between 23.6 and 241.8 m and average heights of 0.6–5.4 m. Moreover, their morphometric variation creates a continuum typical of subaqueous dunes and has similarities to prominent examples linked to GLOFs. The study is especially crucial due to the lack of a wide range of information about megadune development under unconfined settings during the Weichselian glaciation.
References
ALHO P, BAKER VR and SMITH LN, 2010, Paleohydraulic reconstruction of the largest Glacial Lake Missoula draining(s). Quaternary Science Reviews 29(23–24): 3067–3078. DOI: https://doi.org/10.1016/j.quascirev.2010.07.015.
ALLEN JRL, 1984, Sedimentary structures, their character and physical basis Volume 1. Elsevier.
ASHLEY GM, 1990, Classification of large–scale subaqueous bedforms; a new look at an old problem. Journal of Sedimentary Research 60(1): 160–172. DOI: https://doi.org/10.2110/jsr.60.160.
BAKER VR, 1973, Paleohydrology and Sedimentology of Lake Missoula Flooding in Eastern Washington. Geological Society of America Special Paper 144: 79.
BAKER VR, BJORNSTAD BN, DAVID R. GAYLORD DR, SMITH GA, MEYER SE, ALHO P, BRECKENRIDGE RM, SWEENEY MR and ZREDA M, 2016, Pleistocene megaflood landscapes of the Channeled Scabland. The Geological Society of America Field Guide 41: 1–73.
BENN D and EVANS DJ, 2010, Glaciers and glaciation. Routledge.
BER A, 1967, Szczegółowa mapa geologiczna Polski 1:50 000 ark. Jeleniewo (72). Inst Geol, Warszawa.
BER A, 1972, Pojezierze Suwalskie. In: Geomorfologia Polski, Galon R (Ed.) II, PWN, Warszawa: 179–185.
BER A, 1974, Czwartorzęd Pojezierza Suwalskiego. Biul. Inst. Geol. 269 [in Polish].
BER A, 1982, Marginal zones and deglaciation during the North–Polish Glaciation in the Suwałki–Augustów Lakeland. Biuletyn Państwowego Instytutu Geologicznego 343: 71–89.
BER A, 2000, Plejstocen Polski północno–wschodniej w nawiązaniu do głębszego podłoża i obszarów sąsiednich. Prace PIG CLXX, 5–84.
BLAŽAUSKAS N, JURGAITIS A and ŠINKŪNAS P, 2007, Patterns of Late Pleistocene proglacial fluvial sedimentation in the SE Lithuanian Plain. Sedimentary Geology 193(1–4): 193–201. DOI: https://doi.org/10.1016/j.sedgeo.2005.06.015.
BOGACKI M, 1976, Współczesne sandry na przedpolu Skeidararjökull (Islandia) i plejstoceńskie sandry w Polsce północno–wschodniej. Rozprawy Uniwersytetu Warszawskiego 99.
BOGACKI M, 1980, Types of outwash forms in North-East Poland. Geographia Polonica 43: 25–34.
BOHORQUEZ P, CAÑADA-PEREIRAB P, JIMENEZ-RUIZB PJ, DEL MORAL-ERENCIA JD, 2019, The fascination of a shallow-water theory for the formation of megaflood-scale dunes and antidunes. Earth-Science Reviews 193: 91–108.
BOOTHROYD JC and ASHLEY GM, 1975, Processes, bar morphology and sedimentary structures on braided outwash fans, North-eastern Gulf of Alaska. In: Jopling AV, McDonald BC (eds), Glaciofluvial and Glaciolacustrine Sedimentation, Tulsa, Oklahoma, Society of Economic Paleontologists and Mineralogists Special Publication 23: 193–222. DOI: https://doi.org/10.2110/pec.75.23.0193.
CARLING PA, 1996a, Morphology, sedimentology and palaeohydraulic significance of large gravel dunes: Altai Mountains, Siberia. Sedimentology 43: 647–664. DOI: https://doi.org/10.1111/j.1365–3091.1996.tb02184.x.
CARLING PA, 1996b, A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia. In: Branson J, Brown AG and Gregory KJ (eds), Global Continental Changes: The Context of Palaeohydrology, Special Publication Geological Society London 115: 165–179. DOI: https://doi.org/10.1144/GSL.SP.1996.115.01.13.
CARLING PA, 1999, Subaqueous gravel dunes. Journal of Sedimentary Research 69: 534–545. DOI: https://doi.org/10.2110/jsr.69.534.
CARLING PA, 2013, Freshwater megaflood sedimentation: What can we learn about generic processes? Earth–Science Reviews 125: 87–113. DOI: https://doi.org/10.1016/j.earscirev.2013.06.002.
CARLING PA and SHVIDCHENKO AB, 2002, A consideration of the dune: antidune transition in fine gravel. Sedimentology 49(6): 1269–1282. DOI: https://doi.org/10.1046/j.1365–3091.2002.00496.x.
CARLING PA, KIRKBRIDE AD, PARNACHOV S, BORODAVKO PS and BERGER GW, 2002, Late Quaternary catastrophic flooding in the Altai Mountains of south–central Siberia: a synoptic overview and an introduction to flood deposit sedimentology. In: Martini IP, Baker VR and Garzon G (eds), Flood and Megaflood Deposits: Recent and Ancient Examples, International Association of Sedimentologists Special Publication 32: 17–35. DOI: https://doi.org/10.1002/9781444304299.ch2.
CARLING PA and BREAKSPEAR, RMD, 2007, Gravel dunes and antidunes in fluvial systems. In: Dohmen–Janssen CM and Hulscher SJML (eds), River, Coastal and Estuarine Morphodynamics 2: 1015–1020.
CARLING PA, BURR DM and JOHNSEN TF, 2009, A review of open–channel megaflood depositional landforms on Earth and Mars. In: Burr DM, Carling PA and Baker VR, (eds), Megaflooding on Earth and Mars, 1–12.
CARRIVICK JL, RUSSELL AJ and TWEED FS, 2004, Geomorphological evidence for jökulhlaups from Kverkfjöll volcano, Iceland. Geomorphology 63, 81–102.
CLAGUE JJ and RAMPTON VN, 1982, Neoglacial Lake Alsek. Canadian Journal of Earth Sciences 22: 1492–1502. DOI: https://doi.org/10.1139/e82–008.
DUNLOP P and CLARK CD, 2006, The morphological characteristics of ribbed moraine. Quaternary Science Reviews 25(13–14): 1668–1691. DOI: https://doi.org/10.1016/j.quascirev.2006.01.002.
DZIERŻEK J, ZREDA M, 2007, Timing and style of deglaciation of North Eastern Poland from cosmogenic 36Cl dating of glacial and glaciofluvial deposits. Geological Quarterly 51(2): 203–216. DOI: https://gq.pgi.gov.pl/article/view/7451.
FAY H, 2002, The formation of ice–block obstacle marks during the November 1996 glacier outburst flood (jökulhlaup): Skeiðarársandur, southern Iceland. In: Martini IP, Baker VR, Garzon G (eds), Iceland. Flood and Megaflood Deposits: Recent and Ancient Examples. International Association Sediment. Special Publication 32: 85–97. DOI: https://doi.org/10.1002/9781444304299.ch6.
FLEMMING BW, 1978, Underwater sand dunes along the southeast African continental margin—observations and implications. Marine Geology 26(3–4): 177–198. DOI: https://doi.org/10.1016/0025–3227(78)90059–2.
FRYDRYCH M and RDZANY Z, 2022, Glacial outburst flood in the marginal zone of the Wartanian Glaciation: An example from Adamów, central Poland. Quaternary International 617: 21–39. DOI: https://doi.org/10.1016/j.quaint.2021.08.014.
Galon R, 1953, Morfologia doliny i zandru Brdy. Towarzystwo Naukowe. Toruń.
GALON R, 1961, Morphology of the Noteć–Warta (or Toruń–Eberswalde) ice marginal streamway. Prace Geograficzne IGiPZ PAN 29. Warszawa.
GAWRYSIAK L and KOCIUBA W, 2020, Application of geomorphons for analysing changes in the morphology of a proglacial valley (case study: The Scott River, SW Svalbard). Geomorphology 371: 107449. DOI: https://doi.org/10.1016/j.geomorph.2020.107449.
HANSEN L, TASSIS G and HØGAAS F, 2020, Sand dunes and valley fills from Preboreal glacial‐lake outburst floods in south‐eastern Norway–beyond the aeolian paradigm. Sedimentology 67(2): 810–848. DOI: https://doi.org/10.1111/sed.12663.
HERGET J, 2005, Reconstruction of Pleistocene ice–dammed lake outburst floods in the Altai Mountains, Siberia. Geological Society of America 386.
HERGET J, 2012, Ice–dammed lake outburst floods in the Altai Mountains, Siberia – a review with links for further readings. Tomsk State University Journal of Biology 1(17): 148–168.
HERGET J and CARLING PA, 2004, Review on large scale gravel dunes caused by Pleistocene ice–dammed lake outburst floods. Marine Sandwave and River Dune Dynamics, Enschede, the Netherlands 96–101.
HØGAAS F and LONGVA O, 2016, Mega deposits and erosive features related to the glacial lake Nedre Glomsjø outburst flood, southeastern Norway. Quaternary Science Reviews 151: 273–291. DOI: https://doi.org/10.1016/j.quascirev.2016.09.015.
JACKSON RG, 1976, Largescale ripples of the lower Wabash River. Sedimentology 23(5): 593–623. DOI: https://doi.org/10.1111/j.1365–3091.1976.tb00097.x.
JASIEWICZ J and STEPINSKI TF, 2013, Geomorphons–a pattern recognition approach to classification and mapping of landforms. Geomorphology 182: 147–156. DOI: https://doi.org/10.1016/j.geomorph.2012.11.005.
JOHNSEN TF and BRENNAND TA, 2004, Late–glacial lakes in the Thompson Basin, British Columbia: paleogeography and evolution. Canadian Journal of Earth Sciences 41(11): 1367–1383. DOI: https://doi.org/10.1139/e04–074.
KAZBARIS M, ŠINKŪNAS P and ŠINKŪNĖ E, 2013, Late Pleistocene glaciofluvial sedimentation in Gariūnai–Pagiriai proglacial valley, SE Lithuania. Geologija 55(4).
KRZYWICKI T, 2002, The maximum ice sheet limit of the Vistulian Glaciation in North–Eastern Poland and neighbouring areas. Geological Quarterly 46: 165–188.
LANG J and WINSEMANN J 2013, Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology 296: 36–54. DOI: https://doi.org/10.1016/j.sedgeo.2013.08.005.
LANG J, SIEVERS J, LOEWER M, IGEL J, WINSEMANN J, 2017, 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data. Sedimentary Geology 362: 83–100.
LANG J, ALHO P, KASVI E, GOSEBERG N, WINSEMANN J, 2019, Impact of Middle Pleistocene (Saalian) glacial lake-outburst floods on the meltwater-drainage pathways in northern central Europe: insights from 2D numerical flood simulation. Quaternary Science Reviews 209: 82–99.
LANG J, LE HERON DP, VAN DEN BERG JH, WINSEMANN J, 2021, Bedforms and sedimentary structures related to supercritical flows in glacigenic settings. Sedimentology 68: 1539–1579.
LISICKI S, 1993, Deglacjacja Pojezierza Suwalskiego w okresie schyłku Plejstocenu. In: Juskowiak O (eds), Przewodnik 64 Zjazdu Polskiego Towarzystwa Geologicznego, Państwowy Instytut Geologiczny 81–86.
MAIZELS JK, 1989a. Sedimentology, paleoflow dynamics and flood history of jökulhlaup deposits: paleohydrology of Holocene sediment sequences in southern Iceland sandur deposits. Journal of Sedimentary Petrology 59: 204–223. DOI: https://doi.org/10.1306/212F8F4E–2B24–11D7–8648000102C1865D.
MAIZELS JK, 1989b, Sedimentology and palaeohydrology of Holocene flood deposits in front of a jökulhlaup glacier, South Iceland. In: Bevan K and Carling PA (eds), Floods. Hydrological, Sedimentological and Geomorphological Implications: an Overview, John Wiley and Sons: 239–253.
MAIZELS JK, 1992, Boulder ring structures produced during jokulhlaup flows: origin and hydraulic significance. Geografiska Annaler 74A: 21–33.
MAIZELS J, 1993, Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sedimentary Geology 85: 299–325.
MAIZELS JK, 1995, Sediments and landforms of modern proglacial terrestrial environments. In: Menzies J, (ed), Modern Glacial Environments; Processes, Dynamics and Sediments. Butterworth–Heinemann: 365–416. DOI: https://doi.org/10.1016/B978–075064226–2/50012–X.
MAIZELS J, 1997, Jokulhlaup deposits in proglacial areas. Quaternary Science Reviews 16: 793–819. DOI: https://doi.org/10.1016/S0277-3791(97)00023-1.
MAIZELS J, 2002, Sediments and landforms of modern proglacial terrestrial environments. In: J. Menzies (Ed.) Modern and Past Glacial Environments, Elsevier: 279–316.
MARKS L, 2012, Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44: 81–88. DOI: https://doi.org/10.1016/j.quascirev.2010.08.008.
MARKS L and PAVLOVSKAYA IE, 2007, Development of meltwater outflow during last Glacial Maximum in the Middle Neman valley region, Central Europe. Quaternary International 269: 167–168. DOI: https://doi.org/10.1016/j.earscirev.2019.05.006.
MARREN PM, 2002, Fluvial–lacustrine interaction on Skeiðarársandur, Iceland: implications for Sandur evolution. Sedimentary Geology 149: 43–58. DOI: https://doi.org/10.1016/S0037–0738(01)00243–3.
MARREN PM, 2005, Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth–Science Reviews 70(3–4): 203–251. DOI: https://doi.org/10.1016/j.earscirev.2004.12.002.
MARREN PM, RUSSELL AJ and KNUDSEN Ó, 2002, Discharge magnitude and frequency as a control on proglacial fluvial sedimentary systems, In: Dyer F, Thoms MC and Olley JM, (eds), The Structure, Function and Management Implications of Fluvial Sedimentary Systems, IAHS Publication 276: 297–303.
NIEWIAROWSKI W, 1968, Morfologia i rozwój pradoliny i doliny dolnej Drwęcy, TNT 6(6). Toruń.
PARDEE JT, 1942, Unusual currents in glacial lake Missoula, Montana. Geological Association of America Bulletin 53: 1569–1600. DOI: https://doi.org/10.1130/GSAB–53–1569.
PAVLOVSKAYA IE, 2004, Late Pleistocene evolution of hydrographical network recorded at geosites in the middle Neman area (Western Belarus). PGI Special Papers 13: 167–174.
POCHOCKA–SZWARC K and KRZYSZKOWSKI D, 2015, The outwash plain of the Rospuda river valley a record of depositional environments. Studia Quaternaria 32: 63–78.
RODRIGUES S, MOSSELMAN E, CLAUDE N, WINTENBERGER CL and JUGE P, 2015, Alternate bars in a sandy gravel bed river: generation, migration and interactions with superimposed dunes. Earth Surface Processes and Landforms 40(5): 610–628. DOI: https://doi.org/10.1002/esp.3657.
ROSZKO L, 1968, Recesja ostatniego lądolodu z terenu Polski. Prace Geograficzne Instytutu Geograficznego PAN 74: 65–96.
RUDOY AN, 1998, Mountain ice-dammed lakes of southern Siberia and their influence on the development and regime of the runoff systems of North Asia in the late Pleistocene. In: Benito G, Baker VR, Gregory KJ (eds), Palaeohydrology and Environmental Change, Chichester. Wiley, New York, 215–234.
RUDOY AN, 2002, Glacier–dammed lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quaternary International 87(1): 119–140. DOI: https://doi.org/10.1016/S1040–6182(01)00066–0.
RUSSELL AJ, 1994, Subglacial jökulhlaup deposition, Jotunheimen, Norway. Sedimentary Geology 91: 1–14. DOI: https://doi.org/10.1016/0037–0738(94)90126–0.
RUSSELL AJ, 2007, Controls on the sedimentology of an ice–contact jökulhlaup–dominated delta, Kangerlussuaq, West Greenland. Sedimentary Geology 193 (1–4): 131–148. DOI: https://doi.org/10.1016/j.sedgeo.2006.01.007.
RUSSELL AJ, 2009, Jökulhlaup (ice–dammed lake outburst flood) impact within a valley–confined Sandur subject to backwater conditions, Kangerlussuaq, West Greenland. Sedimentary Geology 215(1–4): 33–49. DOI: https://doi.org/10.1016/j.sedgeo.2008.06.011.
RUSSELL AJ, KNIGHT PG and VAN DIJK TAGP, 2001, Glacier surging as a control on the development of proglacial fluvial landforms and deposits, Skeiðarárjökull, Iceland. Global and Planetary Change 28: 163–174. DOI: https://doi.org/10.1016/S0921–8181(00)00071–0.
RUSSELL AJ and KNUDSEN Ó, 2002, The Effects of Glacier‐Outburst Flood Flow Dynamics on Ice‐Contact Deposits: November 1996 Jökulhlaup, Skeiðarársandur, In: Martini IP, Baker VR, Garzon G (eds), Iceland. Flood and Megaflood Deposits: Recent and Ancient Examples Intern. Assoc. Sediment. Special Publication 32: 67–83. DOI: https://doi.org/10.1002/9781444304299.ch5.
RUSSELL AJ, FAY H, MARREN PM, TWEED FS and KNUDSEN Ó, 2005, Icelandic jökulhlaup impacts. In: Caseldine CJ, Russell AJ, Knudsen Ó, Harðardóttir H, (eds), Iceland: Modern Processes and Past Environments. Developments in Quaternary Science 5: 154–203.
RUSSELL AJ, ROBERTS MJ, FAY H, MARREN PM, CASSIDY NJ, TWEED FS and HARRIS T, 2006, Icelandic jökulhlaup impacts: implications for ice–sheet hydrology, sediment transfer and geomorphology. Geomorphology 75 (1–2): 33–64. DOI: https://doi.org/10.1016/j.geomorph.2005.05.018.
RUSSELL AJ, TWEED F, ROBERTS M, HARRIS T, GUDMUNDSSON M, KNUDSEN Ó and MARREN P, 2010, An unusual jökulhlaup resulting from subglacial volcanism, Sólheimajökull, Iceland. Quaternary Science Reviews 29: 1363–1381. DOI: https://doi.org/10.1016/j.quascirev.2010.02.023.
SĂRĂȘAN A, JÓZSA E, ARDELEAN AC and DRĂGUȚ L, 2019, Sensitivity of geomorphons to mapping specific landforms from a digital elevation model: A case study of drumlins. Area 51(2): 257–267. DOI: https://doi.org/10.1111/area.12451.
SCHILLACI C, BRAUN A and KROPÁCEK J, 2015, 2.4. 2. Terrain analysis and landform recognition. Geomorphol. Tech, 2: 1-18. DOI: https://hdl.handle.net/2434/733558.
SOBIECH M, 2019, Geomorfologia i formowanie glacimarginalnych stożków sandrowych w świetle analiz GIS. PhD Thesis, Uniwersytet Mikołaja Kopernika. Toruń.
SOLON J, BORZYSZKOWSKI J, BIDŁASIK M, RICHLING A, BADORA K, BALON J, BRZEZIŃSKA-WÓJCIK T, CHABUDZIŃSKI Ł, DOBROWOLSKI R, GRZEGORCZYK I, JODŁOWSKI M, KISTOWSKI M, KOT R, KRĄŻ P, LECHNIO J, MACIAS A, MAJCHROWSKA A, MALINOWSKA E, MIGOŃ P, MYGA-PIĄTEK U, NITA J, PAPIŃSKA E, RODZIK J, STRZYŻ M, TERPIŁOWSKI S and ZIAJA W, 2018, Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2): 143-170.
SZAFRANIEC J, 2008, Powodzie lodowcowe na Pomorzu: zapis w morfometrii powierzchni sandrowych. Landform Analysis 8: 73–77.
SZAFRANIEC J, 2010a, Zastosowanie wskaźnika urzeźbienia powierzchni sandrowych jako informacji o charakterze drenażu lądolodu Wisły na Pomorzu. Landform Analysis 13: 117–128.
SZAFRANIEC J, 2010b, Próba oszacowania maksymalnych przepływów wód lodowcowych lądolodu Wisły na Pomorzu. Landform Analysis 13: 107–115.
SZAFRANIEC J, 2013, Paleoflood marks in sandur morphometry as the result of the glacier surge (NW Poland). Hydrology Research 44(2): 264–280. DOI: https://doi.org/10.2166/nh.2012.151.
TELLER JT, 2004, Controls, history, outbursts and impact of large late–quaternary proglacial lakes in North America. Developments in Quaternary Sciences 1: 45–61. DOI: https://doi.org/10.1016/S1571–0866(03)01003–0.
TOUCANNE S, SOULET G, FRESLON N, JACINTO RS, DENNIELOU B, ZARAGOSI S, EYNAUD F, BOURILLET JF and BAYON G, 2015, Millennial–scale fluctuations of the European Ice Sheet at the end of the last glacial and their potential impact on global climate. Quaternary Science Reviews 123: 113–133. DOI: https://doi.org/10.1016/j.quascirev.2015.06.010.
VOZNIACHUK LN and VALCHIK MA, 1978, Morphology, Geology and Development of the Niemen Valley in Neopleistocene and Holocene.
WAITT RB, 2002, Great Holocene floods along Jökulsá á Fjöllum, north Iceland. International Association of Sedimentologists Special Publication 32: 37–51. DOI: https://doi.org/10.1002/9781444304299.ch3.
WECKWERTH P, WYSOTA W, PIOTROWSKI JA, ADAMCZYK A, KRAWIEC A and DĄBROWSKI M, 2019, Late Weichselian glacier outburst floods in North–Eastern Poland: Landform evidence and palaeohydraulic significance. Earth–Science Reviews 194: 216–233. DOI: https://doi.org/10.1016/j.earscirev.2019.05.006.
WECKWERTH P, WYSOTA W, PIOTROWSKI JA and KRAWIEC A, 2020, Pleistocene Glacial Megaflood Landform System in NE Poland. In: Weckwerth P, Kalińska E, Wysota W, (eds), Glacial Megaflood Landforms and Sediments in North–Eastern Poland. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. Toruń.
WECKWERTH P, KALIŃSKA E and SATKŪNAS J, 2022a, Glacier Activity and Meltwater Dynamic in Landscape Evolution and Its Transformation. Quaternary International 617: 1–3. DOI: https://doi.org/10.1016/j.quaint.2022.02.020.
WECKWERTH P, KALIŃSKA E, WYSOTA W, KRAWIEC A, ADAMCZYK A and CHABOWSKI M, 2022b, What does transverse furrow train in scabland-like topography originate from? The unique records of upper-flow-regime bedforms of a glacial lake-outburst flood in NE Poland. Quaternary International 617: 40–58. DOI: https://doi.org/10.1016/j.quaint.2021.05.015.
WECKWERTH P and WYSOTA W, 2024, Unique Landscape Originated by Cataclysmic Glacial Floods at the Weichselian Glaciation Decline in North–Eastern Poland. In: Migoń P, Jancewicz K, (eds), Landscapes and Landforms of Poland. World Geomorphological Landscapes. Springer. DOI: 10.1007/978-3-031-45762-3_39.
WINSEMANN J, ALHO P, LAAMANEN L, GOSEBERG N, LANG J and KLOSTERMANN J, 2016, Flow dynamics, sedimentation and erosion of glacial lake outburst floods along the Middle Pleistocene Scandinavian Ice Sheet (northern central Europe), Boreas 45(2): 260–283. DOI: https://doi.org/10.1111/bor.12146.
WINTENBERGER CL, RODRIGUES S, CLAUDE N, JUGÉ P, BRÉHÉRET JG and VILLAR M, 2015, Dynamics of nonmigrating mid–channel bar and superimposed dunes in a sandy–gravelly river (Loire River, France). Geomorphology 248: 185–204. DOI: https://doi.org/10.1016/j.geomorph.2015.07.032.
WIŚNIEWSKI E, 1971, Struktura i tekstura sandru ostródzkiego oraz teras doliny górnej Drwęcy. Prace Geograficzne IGIPZ PAN 84. Warszawa.
ZIELIŃSKI T, 1989, Lithofacies and palaeoenvironmental characteristics of Suwałki outwash (Pleistocene, Northwest Poland). Annales Societatis Geologorum Poloniae 59: 249–270.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mateusz Suwiński, Piotr Weckwerth

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 341
Number of citations: 0