Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Application of accuracy improvement algorithms for extraction of topographic information and drainage network from DEM using GIS
  • Home
  • /
  • Application of accuracy improvement algorithms for extraction of topographic information and drainage network from DEM using GIS
  1. Home /
  2. Archives /
  3. No. 26 (2024): June /
  4. Articles

Application of accuracy improvement algorithms for extraction of topographic information and drainage network from DEM using GIS

Authors

  • Sunanda Nagabathula
  • Srinivasa Rao Yammani ADIKAVI NANNAYA UNIVERSITY https://orcid.org/0000-0001-7844-0223

DOI:

https://doi.org/10.12775/bgeo-2024-0003

Keywords

SRTM, DEM, QGIS, drainage network, catchment area

Abstract

The extraction of drainage network and watershed information is prerequisite for the study of watershed characteristics like morphometric analysis, which provides a basis for hydrological planning and modeling. The advanced tools of algorithms, Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data and Geographical Information System (GIS) software are used to extract drainage networks and their watershed boundaries. These tools are complicated to use or produce more errors in the extraction of elevation and drainage networks when applied to flat areas. For removal of errors and to improve the accuracy in preparation of DEM and extraction of drainage network, Burada Kalava River Basin, Andhra Pradesh, India has been taken for application of accuracy improvement algorithms. An automatic generation of drainage network and watershed using digital elevation model results in positional errors due to variations in slope and topography. This study aimed to generate a catchment area and stream network that closely represent the natural stream network and the streams’ real positions. The step-by-step methodology using GRASS-interfaced Quantum GIS algorithms are given for pre-processing of DEM data to improve the positional accuracy before automatic extraction of the stream network and catchment area to resemble the real situation of the watershed. Secondly, efforts are made to analyze the DEM during automatic generation of the stream network and catchment area by assigning various area threshold values, including the application of pour point coordinates in improving the stream network and watershed characteristics. The results are verified and validated with the field information in order to improve the accuracy levels of DEM quality in generation of drainage network and catchment area.

Author Biography

Srinivasa Rao Yammani, ADIKAVI NANNAYA UNIVERSITY

Prof. Y. Srinivasa Rao

Head: Department of Geosciences, Dean: Faculty of Sciences, Chairman: Board of Studies

ADIKAVI NANNAYA UNIVERSITY

RAJAHMAHENDRAVARAM - 533 296, ANDHRA PRADESH, INDIA

 

References

ARIZA-VILLAVERDE AB, JIMÉNEZ-HORNERO FJ and DE RAVÉ EG, 2015, Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology 241: 243–254. DOI: https://doi.org/10.1016/j.geomorph.2015.03.040.

BHATT S and AHMED SA, 2014, Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International 29(8): 878–894.

CHO SM and LEE M, 2001, Sensitivity considerations when modeling hydrologic processes with digital elevation model 1. JAWRA Journal of the American Water Resources Association 37(4): 931–934. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb05523.x.

DÁVILA-HERNÁNDEZ S, GONZÁLEZ-TRINIDAD J, JÚNEZ-FERREIRA HE, BAUTISTA-CAPETILLO CF, MORALES DE ÁVILA H, CÁZARES ESCAREÑO J, ORTIZ-LETECHIPIA J, ROBLES ROVELO CO AND LÓPEZ-BALTAZAR EA, 2022, Effects of the Digital Elevation Model and Hydrological Processing Algorithms on the Geomorphological Parameterization. Water 14(15): 2363. DOI: https://doi.org/10.3390/w14152363.

DOBOS E, DAROUSSIN J and MONTANARELLA L, 2005, An SRTM-based procedure to delineate SOTER Terrain Units on 1:1 and 1:5 million scales. EUR 21571 EN. 2005. JRC32420.

ESRI, 1999, Technical Documentation of ArcInfo, Version 8.0.1, Redland. CA: Environmental System Research Institute.

FALORNI G, TELES V, VIVONI ER, BRAS RL and AMARATUNGA KS, 2005, Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research: Earth Surface 110 (F2). DOI: https://doi.org/10.1029/2003JF000113.

GETIRANA AC, BONNET MP and MARTINEZ JM, 2009, Evaluating parameter effects in a DEM ‘burning’ process based on land cover data. Hydrological Processes: An International Journal 23(16): 2316–2325.

GOROKHOVICH Y and VOUSTIANIOUK A, 2006, Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote sensing of Environment 104(4): 409–415. DOI: https://doi.org/10.1016/j.rse.2006.05.012.

GREENLEE DD, 1987, Raster and vector processing for scanned linework. Photogrammetric Engineering and Remote Sensing 53: 1383–1387.

HOLMES KW, CHADWICK OA and KYRIAKIDIS PC, 2000, Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. Journal of Hydrology 233(1–4): 154–173.

HORTON RE, 1945, Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin 56(3): 275–370. DOI: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

HUANG PC and LEE KT, 2016, Distinctions of geomorphological properties caused by different flow-direction predictions from digital elevation models. International Journal of Geographical Information Science 30(2): 168–185. DOI: https://doi.org/10.1080/13658816.2015.1079913.

JENSON SK and DOMINGUE JO, 1988, Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric engineering and remote sensing 54(11): 1593–1600.

JONES R, 2002, Algorithms for using a DEM for mapping catchment areas of stream sediment samples. Computers & geosciences 28(9): 1051–1060. DOI: https://doi.org/10.1016/S0098-3004(02)00022-5.

KAAB A, 2005, Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sensing of Environment 94(4): 463–474. DOI: https://doi.org/10.1016/j.rse.2004.11.003.

KIAMEHR R and SJÖBERG LE, 2005, Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. Journal of Geodesy 79: 540–551.

LI L, YANG J and WU J, 2019, A method of watershed delineation for flat terrain using sentinel-2a imagery and DEM: A case study of the Taihu basin. ISPRS International Journal of Geo-Information 8(12): 528. DOI: https://doi.org/10.3390/ijgi8120528.

LI S and YAO J, 2005, A characteristics and assessment analysis of DEM products. Progress in Geography 24: 99–107. DOI: https://doi.org/10.11820/dlkxjz.2005.06.012.

LIPING YANG, XINGMIN MENG and XIAOQIANG ZHANG, 2011, SRTM DEM and its application advances. International Journal of Remote Sensing 32(14): 3875–3896. DOI: https://doi.org/10.1080/01431161003786016.

LIU X and ZHANG Z, 2010, Extracting drainage network from high resolution DEM in Toowoomba, Queensland. Proceedings of the 2010 Queensland Surveying and Spatial Conference (QSSC2010). University of Southern Queensland.

LUDWIG R and SCHNEIDER P, 2006, Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing 60(5): 339–358. DOI: https://doi.org/10.1016/j.isprsjprs.2006.05.003.

MAIDMENT DR, 1996, GIS and hydrologic modeling-an assessment of progress. Third International Conference on GIS and Environmental Modeling, Santa Fe, New Mexico.

MARTZ LW and GARBRECHT J, 1995, Automated recognition of valley lines and drainage networks from grid digital elevation models: A review and a new method—Comment. Journal of Hydrology 167(1–4): 393–396.

MARTZ LW and GARBRECHT J, 1998, The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models. Hydrological processes 12(6): 843–855.

MITCHELL A, 1999, The ESRI guide to GIS analysis: geographic patterns & relationships (Vol. 1). ESRI, Inc.

MOORE ID, GRAYSON RB and LADSON A, 1991, Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes 5(1): 3–30.

MUNOTH P and GOYAL R, 2019, Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management 33: 3303–3319.

O’CALLAGHAN JF and MARK DM, 1984, The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing 28(3): 323–344.

OKSANEN J and SARJAKOSKI T, 2005, Error propagation analysis of DEM‐based drainage basin delineation. International Journal of Remote Sensing 26(14): 3085–3102. DOI: https://doi.org/10.1080/01431160500057947.

ORLANDINI S, MORETTI G and GAVIOLI A, 2014, Analytical basis for determining slope lines in grid digital elevation models. Water Resources Research 50(1): 526–539. DOI: https://doi.org/10.1002/2013WR014606.

RAY LK, 2018, Limitation of automatic watershed delineation tools in coastal region. Annals of GIS 24(4): 261–274.

REDDY GO, KUMAR N, SAHU N and SINGH SK, 2018, Evaluation of automatic drainage extraction thresholds using ASTER GDEM and Cartosat-1 DEM: A case study from basaltic terrain of Central India. The Egyptian Journal of Remote Sensing and Space Science 21(1): 95–104. DOI: https://doi.org/10.1016/j.ejrs.2017.04.001.

SAHA A and SINGH P, 2017, Drainage morphometric analysis and water resource management of Hindon river basin, using earth observation data sets. International Journal of Interdisciplinary Research (IJIR) 3(4): 2051–2057.

SANDERS BF, 2007, Evaluation of on-line DEMs for flood inundation modeling. Advances in water resources 30(8): 1831–1843.

SATHYAMOORTHY D, 2008, Extraction of watersheds from digital elevation models using mathematical morphology. Journal of Applied Sciences 8(6): 956–965.

Saunders W, 2000, Preparation of DEMs for use in environmental modeling analysis. Hydrologic and Hydraulic Modeling Support. Redlands, CA: ESRI, 29-51.

SAUNDERS WK and MAIDMENT DR, 1995, Grid-Based Watershed and Stream Network Delineation for the San Antonio-Nueces Coastal Basin, Proceedings: Texas Water ‘95: A Component Conference of the First International Conference of Water Resources Engineering, August 16–17, 1995, American Society of Civil Engineers, San Antonio, TX.

SOILLE P, VOGT J and COLOMBO R, 2003, Carving and adaptive drainage enforcement of grid digital elevation models. Water resources research 39(12).

STRAHLER AN, 1964, Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology.

TARBOTON DG, BRAS RL and RODRIGUEZ‐ITURBE I, 1988, The fractal nature of river networks. Water resources research 24(8): 1317–1322.

TRIBE A, 1991, Automated recognition of valley heads from digital elevation models. Earth surface processes and landforms 16(1): 33–49.

TRIBE A, 1992, Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. Journal of Hydrology 139(1–4): 263–293.

TURCOTTE R, FORTIN JP, ROUSSEAU AN, MASSICOTTE S and VILLENEUVE JP, 2001, Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network. Journal of hydrology 240(3–4): 225–242.

VENKATESH B, 1999, Comparison of single and multiple flow direction algorithm for computing topographic parameters in TOPMODEL, National Institute of Hydrology report. At: https://www.indiawaterportal.org/articles/comparison-single-and-multiple-flow-direction-algorithm-computing-topographic-parameters).

WANG L and LIU H, 2006, An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science 20(2): 193–213. DOI: https://doi.org/10.1080/13658810500433453.

WHARTON G, 1994, Progress in the use of drainage network indices for rainfall-runoff modelling and runoff prediction. Progress in Physical Geography 18(4): 539–557.

WILSON JP, 2018, Environmental applications of digital terrain modeling. John Wiley & Sons.

ZHANG S, ZHAO B and ERDUN E, 2014, Watershed characteristics extraction and subsequent terrain analysis based on digital elevation model in flat region. Journal of Hydrologic Engineering 19(11): 04014023. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000961.

Bulletin of Geography. Physical Geography Series

Downloads

  • PDF

Published

2024-06-03

How to Cite

1.
NAGABATHULA, Sunanda and YAMMANI, Srinivasa Rao. Application of accuracy improvement algorithms for extraction of topographic information and drainage network from DEM using GIS. Bulletin of Geography. Physical Geography Series. Online. 3 June 2024. No. 26, pp. 35-51. [Accessed 29 June 2025]. DOI 10.12775/bgeo-2024-0003.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 26 (2024): June

Section

Articles

License

Copyright (c) 2024 Sunanda Nagabathula, Srinivasa Rao Yammani

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 432
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

SRTM, DEM, QGIS, drainage network, catchment area
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop