Time of aggregate destruction as a parameter of soil water stability within an agricultural hummocky moraine landscape in northern Poland
DOI:
https://doi.org/10.12775/bgeo-2022-0009Keywords
young hummocky moraine landscape, time of aggregate destruction, aggregate stability, spatial variationAbstract
Slaking is a rapid wetting of soil aggregates that affects their stability in the face of the effects of water. The aggregate’s stability has an indirect influence on soil functioning through its minimising of soil erosion. Testing slaking is very simple, does not need additional complicated equipment and could be done for any point. Testing was performed for natural air-dry aggregates (7–10 mm) sampled from the arable layers of four different types of soils within a young hummocky moraine landscape: Eutric Regosol (Protocalcic), Haplic Luvisol (Protocalcic), Albic Luvisol, Mollic Gleysol. The soil tests were performed on a soil-erosive catena located in Chełmno Lake District (Northern Poland) from the tops of hummocks and from the shoulder to bottom part of depressions. The test results demonstrated a significant decrease in aggregate stability from Mollic Gleysol to Eutric Regosols (Protocalcic) – that is, from colluvial soils at depressions to completely eroded hummock-top soils. However, 75% of all aggregates in Eutric Regosols were unstable when time of aggregate destruction was less than 300 sec. Oppositely to Eutric Regosols laying on hummock tops, 70% of aggregates of Mollic Gleysols in depressions were water stable. The mean time for aggregate destruction for each soil from hummock-top to depression was 209 sec. for Eutric Regosol, 375 sec. for Haplic Luvisol, 616 sec. for Albic Luvisol and 772 sec. for Mollic Gleysol.
The main soil properties that affected the time of aggregate destruction are clay content (very strong negative correlation; r=–0.72); soil organic carbon content (strong positive correlation; r=0.69), and content of secondary carbonates (strong negative correlation; r=–0.69).
References
BARTHÈS B and ROOSE E, 2002, Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47: 133–149.
BLANCO-CANQUI H and LAL R, 2010, Principles of soil conservation and management. Springer Dordrecht. DOI: 10.1007/978-1-4020-8709-7.
BRYAN RB, 1968, The development, use and efficiency of indices of soil erodibility. Geoderma 2: 5–26.
CHUDZIAK W, 1996, Zasiedlenie strefy chełmińskodobrzyńskiej we wczesnym średniowieczu (VII–XI wiek). Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
CRU Time Series v4.04, 2022, https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9 (Accessed 10 May 2022).
DEXTER AR, RICHARD G, ARROUAYS D, CZYŻ EA, JOLIVET C and DUVAL O, 2008, Complexed organic matter controls soil physical properties. Geoderma, 144: 620–627. DOI: 10.1016/j.geoderma.2008.01.022.
DOETTERL S, BERHE AA, NADEU E, WANG Z, SOMMER M and FIENER P, 2016, Erosion, deposition and soil carbon: A review of process level controls, experimental tools and models to address C cycling in dynamic landscapes. EarthScience Reviews 154: 102–122. DOI: 10.1016/j.earscirev.2015.12.005.
EHLERS J and GIBBARD P, 2008, Extent and chronology of Quaternary glaciation. Episodes 31(2): 211–218. DOI: 10.18814/epiiugs/2008/v31i2/004.
ELLISON WD, 1947, Soil erosion studies - part I. Agricultural Engineering 28: 145–146.
EMERSON W, 1954, The determination of the stability of soil crumbs. Journal of Soil Science 5: 235–250.
FOX DM and LE BISSONNAIS Y, 1998, Process-based analysis of aggregate stability effects on sealing, infiltration, and interrill erosion. Soil Science Society of America Journal 62: 717 –724.
GETAHUN GT, MUNKHOLM LJ and SCHJØNNING P, 2016, The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management. Geoderma 264: 94–102. DOI: 10.1016/j.geoderma.2015.10.002.
GUMIERE SJ, LE BISSONNAIS Y and RACLOT D, 2009, Soil resistance to interrill erosion: model parameterization and sensitivity. Catena 77: 274–284.
HILLEL D, WARRICK AW, BAKER RS and ROSENZWEIG C, 1998, Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego California.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, Rome: FAO.
KAY BD and ANGERS DA, 2001, Soil structure. Soil Physics Companion. CRC Press, New York. DOI: 10.1080/03670074.1944.11664380.
KEMPER WD and ROSENAU RC, 1986, Aggregate stability and size distribution. Eds. Klute, Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison, Wisconsin.
LE BISSONNAIS Y, 1996, Aggregate stability and assessment of stability and erodibility: 1. Theory and methodology. European Journal of Soil Science 47: 425–437.
LEVY GJ and MAMEDOV AI, 2002, High-EnergyMoisture-Characteristic Aggregate Stability as a Predictor for Seal Formation. Soil Science Society of America Journal 66: 1603–1609. DOI: https://doi.org/10.2136/sssaj2002.1603.
LUK S, 1977, Rainfall erosion of some Alberta soils; a laboratory simulation study. Catena 3: 295–309.
MARCINEK J and KOMISAREK J, 2004, Antropogeniczne przekształcenia gleb Pojezierza Poznańskiego na skutek intensywnego użytkowania rolniczego. AR, Poznań.
MARKS L, 2012, Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44: 81–88.
MÁRQUEZ CO, GARCIA VJ, CAMBARDELLA CA, SCHULTZ RC and ISENHART TM, 2004, Aggregate‐Size Stability Distribution and Soil
Stability. Soil Science Society of America Journal 68: 725–735. DOI: https://doi.org/10.2136/sssaj2004.7250.
MEOZZI L, 2011, Relation between turbidity and suspended material at different soils, scales and phosphorus levels. Assessment. Available at: http://stud.epsilon.slu.se/3629/.
ORZECHOWSKI M, SMÓLCZYŃSKI S and STRUŻYŃSKA M, 2011, Struktura i wododporność agregatów w glebach antropogenicznie
przekształconych w krajobrazie młodoglacjalnym. Roczniki Gleboznawcze 62(2): 295–304.
OWCZARZAK W and RZĄSA S, 2006, Trwałość struktury poziomów uprawianych gleb w aspekcie podatności na procesy erozyjne. Roczniki Akademii Rolniczej w Poznaniu. Rolnictwo 65: 99–114.
PALUSZEK J, 1994, Wpływ erozji wodnej na strukturę i wodoodporność agregatów gleb płowych wytworzonych z lessu. Roczniki Gleboznawcze 45 (3–4): 21–31.
PALUSZEK J, 2004, Wpływ erozji wodnej na chemiczne właściwości gleb płowych wytworzonych z lessu. Roczniki Gleboznawcze 55(4): 103–113.
PENG X, HORN RF and HALLETT PD, 2015, Soil structure and its functions in ecosystems: phase matter & scale matter. Soil and Tillage Research 146: 1–3. DOI: http://dx.doi.org/10.1016/j.still.2014.10.017.
PODGÓRSKI Z, 2001, Antropogeniczne zmiany rzeźby terenu na obszarze Polski. Przegląd Geograficzny 73 (1–2): 37–56.
RABOT E, WIESMEIER M, SCHLÜTER S and VOGEL H-J, 2018, Soil structure as an indicator of soil functions: A review. Geoderma 314: 122-137. DOI: 10.1016/j.geoderma.2017.11.009.
RADZIUK H, ŚWITONIAK M and NOWAK M, 2021, Microscale spatial variation of soil erodibility factor (K) in a young hummocky moraine landscape in Northern Poland. Bulletin of Geography. Physical Geography Series 21(1): 5–16. DOI: https://doi.org/10.2478/bgeo-2021-0005.
RENGASAMY P and MARCHUK A, 2011, Cation ratio of soil structural stability (CROSS). Soil Research 49(3): 280–285. DOI: https://doi:10.1071/SR10105.
Rezolucja Parlamentu Europejskiego z dnia 28 kwietnia 2021 r. w sprawie ochrony gleb (2021/2548(RSP)) Available at: TA (europa.eu).
RZĄSA S and OWCZARZAK W, 2004, Struktura gleb mineralnych. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego Poznań.
SINKIEWICZ M, 1991, Niektóre problemy przeobrazania stokow na Pojezierzu Kujawskim wskutek denudacji antropogenicznej. Acta - Universitatis Nicolai Copernici. Geografia 23: 3–22.
SINKIEWICZ M, 1998, The development of anthropogenic denudation in central part of Northern Poland. Nicolaus Copernicus University, Toruń.
ŚWITONIAK M, 2014, Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116: 173–184.
URBAŃSKI J, 2011, GIS w badaniach przyrodniczych. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
VAEZI AR, SADEGHI SHR, BAHRAMI HA and MAHDIAN MH, 2008, Modeling the USLE K-factor for calcareous soils in northwestern Iran.
Geomorphology 97(3–4): 414–423. DOI: 10.1016/j.geomorph.2007.08.017.
WATTS CW and DEXTER AR, 1997, The influence of organic matter in reducing the destabilization of soil by simulated tillage. Soil and Tillage Research 42(4): 253-275. DOI: 10.1016/S0167-1987(97)00009-3.
WUDDIVIRA MN, STONE RJ and EKWE EI, 2021, Soil texture, mineralogy, and organic matter effects on structural stability and soil loss of selected Trinidad soils after rainfall. Tropical Agriculture98(3): 302–311.
YAN FL, SHI ZH, CAI CF and LI ZX, 2010, Wetting Rate and Clay Content Effects on Interrill Erosion in Ultisols of Southeastern China. Pedosphere 20(1): 129–136. DOI: https://doi.org/10.1016/S1002-0160(09)60292-7.
ZHANG B and HORN H, 2001, Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma 99: 123–145. DOI: 10.1016/ S0016-7061(00)00069-0.
ZHU Y, MARCHUK A and BENNETT JML, 2016, Rapid method for assessment of soil structural stability by turbidimeter. Soil Science Society of America Journal 80(6): 1629–1637. DOI: https://doi: 10.2136/sssaj2016.07.0222.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Hanna Radziuk, Marcin Świtoniak
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 342
Number of citations: 0