Distribution of cold and temperate ice and water in glaciers at Nordenskiöld Land, Svalbard, according to data on ground-based radio-echo sounding
DOI:
https://doi.org/10.2478/bgeo-2019-0016Keywords
Nordenskiöld Land, polythermal glacier, radio-echo sounding, SvalbardAbstract
The distribution of cold and temperate ice and water in polythermal glaciers is an important characteristic in studying their thermal regime, hydrology, and response to climate change. Data analysis of ground-based radio-echo sounding of 16 glaciers in Nordenskiöld Land in Spitsbergen shows that 4 of them are of cold type and 12 are of polythermal type. The mean thickness of cold and temperate ice in polythermal glaciers varies from 11±2 to 66±6 m and from 6±2 to 96±9 m, respectively, and their ratio varies from 0.30 to 5.31. The volume of temperate ice in polythermal glaciers varies from 0.0009 to 3.733 (±10%) km3. With water content of 2% in temperate ice in these glaciers they might contain in total up to ~93.5 × 106 m3 of liquid water. Radar data suggest the greater water content or greater size of water inclusions in near-bottom temperate ice.
References
ANDREASSEN LM, HUSS M, MELVOLDT K, ELVERHOY H and WINSWOLD SH, 2015, Ice thickness measurements and volume estimates for glaciers in Norway. Journal of Glaciology 61(228): 764-775, DOI: http://doi.org/10.3189/2015JoG14J161
ASCHWANDEN A and BLATTER H, 2005, Meltwater production due to strain heating in Storglaciären. Sweden. Journal of Geophysical Research 110(F4): F04024.2005, DOI: http://doi.org/10.1029/2005JF000328
ASCHWANDEN A, BUELER E, KHROULEV C and BLATTER H, 2012, An enthalpy formulation for glaciers and ice sheets. Journal of Glaciology 58(209): 441-457, DOI: http://doi.org/10.3189/2012JoG11J088
BÆLUM K and BENN D, 2011, Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. The Cryosphere 5: 139–149, DOI: http://doi.org/10.5194/tc-5-139-2011
BAMBER JL, 1987, Internal reflecting horizons in Spitsbergen glaciers. Annals of Glaciology 9: 5-10.
BAMBER JL, 1988, Enhanced radar scattering from water inclusions in ice. Journal of Glaciology 34(118): 293-296.
BAMBER JL, 1989, Ice/bed interface and englacial properties of Svalbard ice masses from airborne radio-echo sounding. Journal of Glaciology 35(119): 30-37.
BARRETT BE, MURRAY T and CLARK R, 2007, Errors in radar CMP velocity estimates due to survey geometry and their implication for ice water content estimation. Journal of Environmental and Engineering Geophysics 12(1): 101–111.
BJÖRNSSON H, GJESSING Y, HAMRAN S-E, HAGEN JO, LIESTØL O, PÁLSSON F and ERLINGSSON B, 1996, The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. Journal of Glaciology 42(140): 23-32.
BŁASZCZYK M, JANIA JA, HAGEN JO, 2009, Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Polish Polar Research 30(2): 85–142.
BLATTER H and GREVE R, 2015, Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science 9: 197–207.
BUKOWSKA-JANIA E, SZAFRANIEC J, 2005, Distribution and morphometric characteristics of icing fields in Svalbard. Polar Research 24 (1-2): 41-53.
DOWDESWELL JA, DREWRY DJ, LIESTØL O and ORHEIM O, 1984, Airborne radio echo sounding of sub-polar glaciers in Spitsbergen. Norsk Polarinstitutte Skrifter 182: 1-42.
DOWDESWELL JA and EVANS S, 2004, Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Reports on Progress in Physics 67(10): 1821-1861
DUVAL P, 1977, The role of water content on the creep of polycrystalline ice. IAHS Publication 118: 29–33.
ENDRES AL, MURRAY T, BOOTH AD and WEST LJA, 2009, A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities. Geophysical Research Letters 36(4): L04501, DOI: http://doi.org/10.1029/2008GL036876
FROLOV AD and MACHERET YY, 1999, On dielectric properties of dry and wet snow. Hydrological Processes 13: 1755-1760.
GACITÚA G, URBINE J A, WILSON R, LORIAUX T, HERNANDEZ J and RIVERA A, 2015, 50MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes. Annals of Glaciology 56(70): 93-101, DOI: http://doi.org/10.3189/2015AoG70A953
GLAZOVSKY AF, KRASS MS and MACHERET YY, 1988, Peculiarities in dynamics of subpolar glaciers under climate changes. Data of Glaciological Studies 85: 187-195.
GLAZOVSKY AF and MACHERET YY, 2014, Water in glaciers. Results of geophysical and remote sensing studies. GEOS, Moscow.
GOKHMAN VV, 1987, Spreading and formation conditions of icings in Spitsbergen. Data of glaciological studies 89: 68-76.
GRABIEC M, JANIA J, PUCZKO D, KOLONDRA L, BUDZIK T, 2012, Surface and bed morphology of Hansbreen, a tidewater glacier in Spitsbergen. Polish Polar Research 33(2): 111-138. DOI: http://doi.org/10.2478/v10183-012-0010-7
HEWITT I J and SCHOOF C, 2017, Models for polythermal ice sheets and glaciers. The Cryosphere 11: 541-551, DOI: http://doi.org/10.5194/tc-11-541-2017
JANIA J, MACHERET YY, NAVARRO FJ, GLAZOVSKY AF, VASILENKO EV, LAPAZARAN J, GLOWACKI P, MIGALA K, BALUT A and PIWOWAR BA, 2005, Temporal changes in the radiophysical properties of a polythermal glacier. Annals of Glaciology 42: 125-134.
JISCOOT H, MURRAY T and BOYLE P, 2000, Controls on distribution of surge-type glaciers. Journal of Glaciology 46(154): 411-422.
KRIVORUCHKO K, 2012, Empirical Bayesian Kriging implemented in ArcGIS Geostatistical Analyst. ArcUser 15(4): 6–10.
KULNITSKY LM, GOFMAN PA and TOKAREV MY, 2001, Mathematical processing of georadar data and RADEXPRO system, Razvedka. Okhrana nedr 3: 6–11.
KUTUZOV S, THOMPSON LG, LAVRENTIEV I and TIAN L, 2018, Ice thickness measurements of Guliya ice cap, western Kunlun Mountains (Tibetan Plateau), China. Journal of Glaciology 64(248): 977–989, DOI: http://doi.org/10.1017/jog.2018.91
LAPAZARAN JJ, OTERO J, MARTIN-ESPAÑOL A and NAVARRO FJ, 2016a, On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors. Journal of Glaciology 62(236): 1008-1020, DOI: http://doi.org/10.1017/jog.2016.93
LAPAZARAN JJ, OTERO J, MARTIN-ESPAÑOL A and NAVARRO FJ, 2016b, On the errors involved in ice-thickness estimates II: errors in digital elevation models of ice thickness. Journal of Glaciology 62(236): 1021-1029, DOI: http://doi.org/10.1017/jog.2016.94
LAVRENTIEV II, GLAZOVSKY AF, MACHERET YY, MURAVYEV AY and MATSKOVSKY VV, 2019, Reserves of ice in glaciers on the Nordenskiöld Land, Spitsbergen and their changes over the last decades. Ice and Snow 59(1): 23-38.
LOOYENGA H, 1965, Dielectric constants of heterogeneous mixture. Physica 31(3): 401–406.
MACHERET YY, 2000, Estimation of water content in glaciers using hyperbolic reflections. Data of glaciological studies 89: 3-10.
MACHERET YY, BERIKASHVILI VS, VASILENKO EV, SOKOLOV VG, 2006, Broadband pulse radar for sounding glaciers with optical synchronization channel and digital signal processing. Sensors and Systems 12, 2–8.
MACHERET YY and GLAZOVSKY AF, 2000, Estimation of absolute water content in Spitsbergen glaciers from radar sounding data. Polar Research 19(2): 205-216.
MACHERET YY and ZHURAVLEV AB, 1982, Radio-echo sounding of Svalbard glaciers. Journal of Glaciology 28(99): 295-314.
MARCHENKO AV, MOROZOV EG and MARCHENKO AN, 2017, Supercooling of seawater near the glacier front in a fjord. Earth Science Research 6(1): 97-108.
MARTIN-ESPAÑIOL A, VASILENKO EV, NAVARRO FJ, OTERO J, LAPAZARAN JJ, LAVRENTIEV II, MACHERET YY and MACHIO F, 2013, Radio-echo sounding and ice volume estimates on western Nordenskiöld Land, Svalbard. Annals of Glaciology 54(64): 211-217, DOI: http://doi.org/10.3289/2013AoG64A109
MARTIN-ESPAÑOL A, LAPAZARAN JJ, OTERO J and NAVARRO FJ, 2016, On the errors involved in ice-thickness estimates III: error in volume. Journal of Glaciology 62(236):1030-1036, DOI: http://doi.org/10.1017/jog.2016.95
MURRAY T, JAMES TD, MACHERET YY, LAVRENTIEV II, GLAZOVSKY AF and SYKES H, 2012, Geometric changes in a tidewater glacier in Svalbard. Arctic, Antarctic, and Alpine Research 44(3): 359-367.
MURRAY T and PORTER PR, 2001, Basal conditions beneath a soft-bedded polythermal surge-type glacier: Bakaninbreen, Svalbard. Quaternary International 86(1): 103-116. DOI: http://doi.org/10.1016/S1040-6182(01)00053-2
MUZYLEV SV, MACHERET YY, MOROZOV EG, LAVRENTIEV II, MARCHENKO AV, 2013, Fluctuations of ice cover and sea water pressure nearby the Tunabreen Glacier front at Spitsbergen. Ice and Snow 53(4): 119-124 DOI: http://doi.org/10.15356/2076-6734-2013-4-119-124
NAVARRO FJ, GLAZOVSKY AF, VASILENKO EV, CORCUERA MI and CUADRADO L, 2005, Ice volume changes (1936-1990) and structure of Aldegondabreen. Spitsbergen. Annals of Glaciology 42: 158-162.
NAVARRO FJ, LAPAZARAN JJ, MARTIN-ESPAÑOL A and OTERO J, 2016, Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers. Cuadernos de Investigacion Geografica 42(1): 399-414, DOI: http://doi.org/10/18172/cig.2929
ØDEGAARD RS, O., HAFEN JO and HAMRAN S-E, 1997, Comparison of radio-echo sounding (30-1000 MHz) and high-resolution borehole-temperature measurements at Finsterwalderbreen, southern Spitsbergen, Svalbard. Annals of Glaciology 24: 262-267.
PFEFFER WT, ARENDT AA, BLISS A, BOLCH T, COGLEY JG, GARDNER AS, HAGEN JO, HOCK R, KASER G, KIENHOLZ C, MILES ES, MOHOLDT G, MÖLG N, PAUL F, RADIC´ V, RASTNER P, RAUP BH, RICH J, SHARP MJ, THE RANDOLPH CONSORTIUM, 2014, The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology 60(221): 537-552. DOI: http://doi.org/10.3189/2014JoG13J176
RGI CONSORTIUM. 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report. Global Land Ice Measurements from Space. Colorado. USA. Digital Media. DOI: http://doi.org/10.7265/N5-RGI-60
SEVESTRE H, BENN DI, J. HULTON NR and BÆLUM K, 2015, Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journal of Geophysical Research: Earth Surface 120(10): 2220-2236, DOI: http://doi.org/10.1002/2015JF003517
SOSNOVSKY AV, MACHERET YY, GLAZOVSKY AF and LAVRENTIEV II, 2016, Hydrothermal structure of a polythermal glacier in Spitsbergen by measurements and numerical modeling. Ice and Snow 56(2): 149-160.
VASILENKO EV, GLAZOVSKY AF, LAVRENTIEV II and MACHERET YY, 2014, Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen in Spitsbergen. Ice and Snow 1(125): 5-19.
VASILENKO E, MACHIO F, LAPAZARAN J, NAVARRO FJ and FROLOVSKIY K, 2011, A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journal of Glaciology 57(206): 1113-1118. Doi: http://doi.org/10.3189/002214311798843430
ZHURAVLEV AB, BOBROVA LI and MACHERET YY, 1993, Radio-echo-sounding of a polar glacier with summer water run-off. Data of glaciological studies 46: 143-149.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Bulletin of Geography. Physical Geography Series

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 501
Number of citations: 3