Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

30,000 YEARS OF GROUND SURFACE TEMPERATURE AND HEAT FLUX CHANGES IN KARELIA RECONSTRUCTED FROM BOREHOLE TEMPERATURE DATA
  • Home
  • /
  • 30,000 YEARS OF GROUND SURFACE TEMPERATURE AND HEAT FLUX CHANGES IN KARELIA RECONSTRUCTED FROM BOREHOLE TEMPERATURE DATA
  1. Home /
  2. Archives /
  3. No. 6 (2013) /
  4. Articles

30,000 YEARS OF GROUND SURFACE TEMPERATURE AND HEAT FLUX CHANGES IN KARELIA RECONSTRUCTED FROM BOREHOLE TEMPERATURE DATA

Authors

  • DMITRY Yu. DEMEZHKO Institute of Geophysics UB RAS, 100 Amundsen Str., 620016, Yekaterinburg
  • ANASTASIA A. GORNOSTAEVA Institute of Geophysics UB RAS, 100 Amundsen Str., 620016, Yekaterinburg
  • GEORGY V. TARKHANOV JSC “SIC Nedra”, 8/38 Svobody Str., 150000, Yaroslavl
  • OLEG A. ESIPKO JSC “SIC Nedra”, 8/38 Svobody Str., 150000, Yaroslavl

DOI:

https://doi.org/10.2478/bgeo-2013-0001

Keywords

Borehole temperatures, paleoclimate reconstruction, Pleistocene/ Holocene transition, surface temperature, heat flux, Karelia

Abstract

Analyses of temperature-depth profiles logged in deep boreholes (> 1 km) permit the reconstruction of ground surface temperature (GST) and surface heat flux (SHF) histories in the period of global climate change at the border of the Pleistocene and the Holocene. We reconstructed past GST and SHF histories using data obtained from the 3.5-km-deep Onega borehole (Karelia, north-west Russia). The resulting reconstructions include information on the basal thermal regime of the Scandinavian Ice Sheet, which covered the region in the Last Glacial Maximum (LGM). The surface temperature history reveals a high amplitude of Pleistocene/ Holocene warming equal to 18–20 K. The heat flux changes precede the surface temperature changes and are close to the variations of insolation at a latitude of 60°N. A comparison of the reconstructed GST and SHF histories with the records of carbon dioxide contents in Antarctic ice cores shows that CO2 changes are much closer to temperature changes than they are to heat flux changes.

References

ANDERSON M.C., NORMAN J.M., KUSTAS W.P., HOUBORG R., STARKS P.J. and AGAM N., 2008, A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales, Remote Sensing of Environment, 112, 4227–4241.

BARNOLA J. M., RAYNAUD D., KOROTKEVICH Y. S. and LORIUS C., 1987, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408–414, doi: 10.1038/329408a0, data from ftp://ftp.ncdc.noaa.gov/pub/data/ paleo/icecore/ antarctica/vostok/co2.txt.

BARNOLA J.-M., RAYNAUD D., LORIUS C. and BARKOV N.I., 2003, Historical CO2 record from the Vostok ice core. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. Revised February 2003, data from http://cdiac.esd.ornl.gov/ftp/trends/ co2/vostok.icecore.co2, http://cdiac.ornl.gov/trends/co2/vostok.html.

BECK A.E. and JUDGE A., 1969, Analysis of heat flow data – I. Detailed observation in a single borehole, Geophys. J. Res. astr. Soc., 18, 145–158.

BECK A.E., 1982, Precision logging of temperature gradients and the extraction of past climate, Tectonophysics, 83, 1–11.

BELTRAMI H., SMERDON J., POLLACK H. and HUANG S., 2002, Continental heat gain in the global climate system, Geophys. Res. Lett., 29, 8, 10.1029/2001GL014310.

BELTRAMI H., BOURLON E., KELLMAN L. and GONZALEZ-ROUCO J. F., 2006, Spatial patterns of ground heat gain in the Northern Hemisphere, Geophys. Res. Lett., 33, L06717, doi:10.1029/2006GL025676.

BERGER A. and LOUTRE M.F., 1991, Insolation values for the climate of the last 10 million of years, Quaternary Sciences Review, 10, 4, 297–317, data from http://gcmd.nasa.gov/records/GCMD_EARTH_LAND_NGDC_PALEOCLIM_ INSOL.html.

BIRCH F., 1948, The effect of pleistocene climatic variations upon geothermal gradient, Am. J. Sci, 61, 567–630.

BLUNIER T., CHAPPELLAZ J., SCHWANDER J., DÄLLENBACH A., STAUFFER B., STOCKER T., RAYNAUD D., JOUZEL J., CLAUSEN H.B., HAMMER C.U. and JOHNSEN S.J., 1998, Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739–743.

BODRI L. and CERMAK V., 2007, Borehole climatology. A new method on how to reconstruct climate, Elsevier Science, 352 pp.

BODRI L. and CERMAK V., 1997, Reconstruction of remote climate changes from borehole temperatures, Glob. Planet. Change, 1997b, 15, 47–57.

CARSLAW H.S. and JAEGER J.C., 1959, Conduction of Heat in Solids, 2nd ed., Oxford Univ. Press, New York, 510 pp.

CERMAK V., 1971, Underground temperature and inferred climatic temperature of the past millennium, Palaeogeogr. Palaeoclim. Palaeoecol., 10, 1–19.

CHOUDHURY B. J., IDSO S. B. and REGINATO R. J., 1987, Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation, Agricultural and Forest Meteorology, 39, 283–297.

DAHL-JENSEN D., MOSEGAARD K., GUNDESTRUP N., CLOW G.D., JOHNSEN S.J., HANSEN A.W. and BALLING N., 1998, Past temperatures directly from the Greenland Ice Sheet, Science, 282, 268–271.

DEMEZHKO D.Yu. and SHCHAPOV V.A., 2001, 80,000 years ground surface temperature history inferred from the temperature-depth log measured in the super deep hole SG-4 (the Urals, Russia), Global Planet. Change, 29 (1–2), 219–230.

DEMEZHKO D.Yu., RYVKIN D.G., OUTKIN V.I., DUCHKOV A.D. and BALOBAEV V.T., 2007, Spatial distribution of Pleistocene/Holocene warming amplitudes in Northern Eurasia inferred from geothermal data, Clim. Past, 3, 559–568.

DEMEZHKO D. Yu. and SOLOMINA O.N., 2009, Ground Surface Temperature Variations on Kunashir Island in the Last 400 Years Inferred from Borehole Temperature Data and Tree-Ring Records, Doklady Earth Sciences, 426, 4, 628–631.

FORSSTRÖM P.-L., 2005, Through a glacial cycle: simulation of the Eurasian ice sheet dynamics during the last glaciation, Annales Academiae Scientiarum Fennicae, Geologica-Geographica, 168, 94 pp.

GLUSHANIN L.V., SHAROV N.V. and SHCHIPTSOV V.V. (eds.), 2011, Palaeoproterozoic Onega structure (Geology, Tectonics, Deep structure and Mineralogeny), KSC., Petrozavodsk, 431 pp. (in Russian).

GOLOVANOVA I.V., SAL’MANOVA R.Yu. and DEMEZHKO D.Yu., 2012, Climate reconstruction in the Urals from geothermal data, Russian Geology and Geophysics, 53, 1366–1373.

HUANG S., 2006, Annual heat budget of the continental landmasses, Geophys. Res. Lett., 33, L04707, 1851–2004, doi:10.1029/2005GL025300.

INDERMUHLE A., MONNIN E., STAUFFER B., STOCKER T.F. and WAHLEN M., 1999, Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica, Geophy. Res. Lett., 27, 735–738, data from http:// www.ncdc.noaa.gov/paleo/taylor/taylor-glacial.html.

INDERMUHLE A., STOCKER T.F., JOOS F., FISCHER H., SMITH H.J., WAHLEN M., DECK B., MASTROIANNI D., TSCHUMI J., BLUNIER T., MEYER R. and STAUFFER B., 1999b, Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121–126, data from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/.

KLEMAN J. and HATTESTRAND C., 1999, Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum, Nature, 402, 63–66.

KRAPEZ J-C., OLIOSOB A. and COUDERTC B., 2009, Comparison of three methods based on the Temperature-NDVI diagram for soil moisture characterization, Proc. of SPIE, 7472, 74720Y, 1–12, doi: 10.1117/12.830451.

KUKKONEN I.T., GOSNOLD W.D. and ŠAFANDA J., 1998, Anomalously low heat flow density in eastern Karelia, baltic Shield: a possible paleoclimate signature, Tectonophysics, 291, 235–249.

KUKKONEN I.T, RATH V., KIVEKAS L., ŠAFANDA J. and ČERMAK V., 2011, Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications, Physics of the Earth and Planetary Interiors, 188, 9–25.

LACHENBRUCH A.H. and MARSHALL B.V., 1986, Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic, Science, 234, 689–696.

LUNKKA J. P., SAARNISTO M., GEY V. P., DEMIDOV I. and KISELOVA V., 2001, Extent and age of the Last Glacial maximum in the southeastern sector of the Scandinavian Ice Sheets, Global Planet. Change, 31, 407–426. Majorowicz, J., 2012, Permafrost at the ice base of recent Pleistocene glaciations – inferences from borehole temperature profiles, Bulletin of Geography-Physical Geography Series, V.5(1), 7-28, DOI: 10.2478/v10250-012-0001-x

MAJOROWICZ J., SKINNER W. and SAFANDA J., 2012a, Western Canadian Sedimentary Basin temperature–depth transients from repeated well logs: evidence of recent decade subsurface heat gain due to climatic warming, J. Geophys. Eng., 9, 127–137, doi:10.1088/1742-2132/9/2/127.

Majorowicz J., Safanda J., and Osadetz K., 2012b, Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort- Mackenzie Basin, Arctic Canada. Clim. Past, 8(2), 667–682.

NARKISOVA V.V. (ed.), 2009, The Onega parametric borehole, Report, Yaroslavl (in Russian), http://karelnedra.karelia.ru/geolinform/onego_skv_0.htm.

PEDRO J.B., RASMUSSEN S.O. and VAN OMMEN T.D., 2012, Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation, Clim. Past, 8, 1213–1221, doi:10.5194/cp-8-1213-2012, www. clim-past.net/8/1213/2012/.

RAJVER D., SAFANDA J. and SHEN P.Y., 1998, The climate record inverted from borehole temperatures in Slovenia, Tectonophysics, 291, 263–276.

SAARNISTO M. and SAARINEN T., 2001, Deglaciation chronology of the Scandinavian Ice Sheet from the Lake Onega Basin to the Salpausselka End Moraines, Global Planet. Change, 31, 387–405.

SAFANDA J., SZEWCZYK J. and MAJOROWICZ J., 2004, Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet, Geophys. Res. Lett., 31, L07211, doi:10.1029/2004GL019547.

SHAKUN J.D., CLARK P.U., HE F., MARCOTT S.A., MIX A.C., LIU Z., OTTOBLIESNER B., SCHMITTNER A. and BARD E., 2012, Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 4, 484(7392):49-54, doi: 10.1038/nature10915.

SMITH H. J., FISCHER H., MASTROIANNI D., DECK B. and WAHLEN M., 1999, Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248–250, data from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/ antarctica/taylor/.

SONIN G.V., 2001, Thermophysical properties of soils and neutral layer temperatures in the CIS territory, Georesources, 1(5), 16–19 (in Russian).

WANG J. and BRAS R.L., 1999, Ground heat flux estimated from surface soil temperature, J. Hydrology, 216, 3–4, 214–226.

YLI-HALLA M. and MOKMA D.L., 1998, Soil temperature regimes in Finland, Agriculture and Food Science in Finland, 7, 507–512.

Bulletin of Geography. Physical Geography Series

Downloads

  • PDF

Published

2013-11-26

How to Cite

1.
DEMEZHKO, DMITRY Yu., GORNOSTAEVA, ANASTASIA A., TARKHANOV, GEORGY V. and ESIPKO, OLEG A. 30,000 YEARS OF GROUND SURFACE TEMPERATURE AND HEAT FLUX CHANGES IN KARELIA RECONSTRUCTED FROM BOREHOLE TEMPERATURE DATA. Bulletin of Geography. Physical Geography Series. Online. 26 November 2013. No. 6, pp. 7-25. [Accessed 29 June 2025]. DOI 10.2478/bgeo-2013-0001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 6 (2013)

Section

Articles

Stats

Number of views and downloads: 557
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Borehole temperatures, paleoclimate reconstruction, Pleistocene/ Holocene transition, surface temperature, heat flux, Karelia
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop