Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Editorial Advisory Board
    • Privacy Statement
    • Contact
  • Register
  • Login

Bulletin of Geography. Physical Geography Series

Humusica - Soil biodiversity and global change
  • Home
  • /
  • Humusica - Soil biodiversity and global change
  1. Home /
  2. Archives /
  3. No. 14 (2018) /
  4. Articles

Humusica - Soil biodiversity and global change

Authors

  • Augusto Zanella Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Viale dell’Università 36, 35020 Legnaro (PD) http://orcid.org/0000-0001-7066-779X
  • Judith Ascher-Jenull Università degli Studi di Firenze, Dipartimento di Scienze Agroalimentari e dell'Ambiente (DiPSAA), Italy and University of Innsbruck, Institute of Microbiology, Austria
  • Jean-François Ponge Muséum National d’Histoire Naturelle, Département Adaptations du Vivant (AVIV)
  • Cristian Bolzonella Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Viale dell’Università 36, 35020 Legnaro (PD)
  • Damien Banas Université de Lorraine, UR AFPA
  • Maria De Nobili Università di Udine, Dipartimento di Scienze Agroalimentari, Ambientali e Animali (Di4A)
  • Silvia Fusaro Università di Padova, Dipartimento di Biologia, via U. Bassi 58, Padova
  • Raffaello Giannini Academy of Forest Science – Florence

DOI:

https://doi.org/10.2478/bgeo-2018-0002

Keywords

Humusica, soil organic matter, soil structure, soil biology, soil functioning, agriculture, organic agriculture, gross domestic product, humus forms classification, forest humus forms, TerrHum

Abstract

Born in Trento (Italy, 2003) for standardizing vocabulary and units of humus form classification, after publishing a first synthetic classification e-book (Zanella et al., 2011), the Humus group decided to use its classification for facing global change (Zanella and Ascher-Jenull, 2018). The classification was detailed in many scientific articles published in three special issues (Humusica 1, 2 and 3) of the journal Applied Soil Ecology. The main seven ideas that supported the whole Humusica project are briefly presented here:

  1. soil covers all planet Earth surfaces (soil as the seat of processes of organic matter storage and recycling);
  2. soil is only a biogenic structure (with a debate about the definition of the word “soil”);
  3. soil may be involved in the process of natural evolution (through a process of organism’ recycling of biomass after death);
  4. agricultural soils correspond to simplified natural soils (comparison between natural and agricultural soils);
  5. TerrHum, an appeal for classifying forest humipedons worldwide (a first attempt to use a smart cell phone as a field manual for humus form classification).
  6. Organic waste and agricultural soils.
  7. Is traditional agriculture economically sustainable? Comparing past traditional (1947) and today intensive farm practices in the Venice province of Italy.

Author Biography

Augusto Zanella, Università di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TESAF), Viale dell’Università 36, 35020 Legnaro (PD)

Associate Professor

Dipartimento Territorio e Sistemi Agro-Forestali (TESAF)

References

Aubert, M., Bureau, F., 2018. Forest humus forms as a playground for studying aboveground-belowground relationships: Part 1, theoretical backgrounds. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.09.004

Balestrini, R., Lumini, E., 2018. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.09.001

Bardgett, R.D., Van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. doi:10.1038/nature13855

Bender, S.F., Wagg, C., van der Heijden, M.G.A., 2016. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. doi:10.1016/j.tree.2016.02.016

Bernier, N., 2018. Hotspots of biodiversity in the underground: A matter of humus form? Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.09.002

Bhatia, C.R., 2008. Role of Microbial Diversity for Soil, Health and Plant Nutrition, in: Nautiyal, C.S., Dion, P. (Eds.), Molecular Mechanisms of Plant and Microbe Coexistence. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 53–74. doi:10.1007/978-3-540-75575-3_2

Blouin, M., 2018. Chemical communication: An evidence for co-evolution between plants and soil organisms. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.10.028

Brussard, L., 2012. Ecosystem services provided by the soil biota, in: Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J. (Eds.), Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, pp. 45–58.

Caesar-Tonthat, T.C., 2002. Soil binding properties of mucilage produced by a basidiomycete fungus in a model system. Mycol. Res. 106, 930–937. doi:https://doi.org/10.1017/S0953756202006330

Cartenì, F., Bonanomi, G., Giannino, F., Incerti, G., Vincenot, C.E., Chiusano, M.L., Mazzoleni, S., 2016. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications. Plant Signal. Behav. 11, e1158381. doi:10.1080/15592324.2016.1158381

Centenaro, G., Hudek, C., Zanella, A., Crivellaro, A., 2018. Root-soil physical and biotic interactions with a focus on tree root systems: A review. Appl. Soil Ecol. 123, in Press. doi:10.1016/j.apsoil.2017.09.017

Chiti, T., Gardin, L., Perugini, L., Quaratino, R., Vaccari, F.P., Miglietta, F., Valentini, R., 2012. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol. Fertil. Soils 48, 9–17. doi:10.1007/s00374-011-0599-4

Cordell, D., Drangert, J.-O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19, 292–305. doi:https://doi.org/10.1016/j.gloenvcha.2008.10.009

Dahan, M., Tsiddon, D., 1998. Demographic transition, income distribution, and economic growth. J. Econ. Growth 3, 29–52.

Darwin, C., 1859. On the Origin of Species by Means of Natural Selection. John Murray, London, London.

Drosos, M., Nebbioso, A., Piccolo, A., 2018. Humeomics: A key to unravel the humusic pentagram. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.07.027

Eisenhauer, N., Antunes, P.M., Bennett, A.E., Birkhofer, K., Bissett, A., Bowker, M.A., Caruso, T., Chen, B., Coleman, D.C., De Boer, W., De Ruiter, P., DeLuca, T.H., Frati, F., Griffiths, B.S., Hart, M.M., Hättenschwiler, S., Haimi, J., Heethoff, M., Kaneko, N., Kelly, L.C., Leinaas, H.P., Lindo, Z., Macdonald, C., Rillig, M.C., Ruess, L., Scheu, S., Schmidt, O., Seastedt, T.R., Van Straalen, N.M., Tiunov, A.V., Zimmer, M., Powell, J.R., 2017. Priorities for research in soil ecology. Pedobiologia (Jena). 63, 1–7. doi:10.1016/j.pedobi.2017.05.003

Elser, J., Bennett, E., 2011. A broken biogeochemical cycle. Nature 478, 29.

Feller, C., Boulaine, J., 1987. La réapparition du mot humus au XVIIe siècle et sa signification agronomique. Rev. For. Française 39, 487–495. doi:10.4267/2042/25821

Four, B., Arce, E., Danger, M., Gaillard, J., Thomas, M., Banas, D., 2017. Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams. Environ. Sci. Pollut. Res. 24, 5452–5468. doi:10.1007/s11356-016-8273-x

Fusaro, S., 2015. Evaluation, maintenance and improvement of biodiversity for environmental protection and crop, in: Squartini, A., Paoletti, G.M. (Eds.), Doctorate Thesis. Università degli Studi di Padova (Italia), p. 255.

Fusaro, S., Squartini, A., Paoletti, M.G., 2018. Functional biodiversity, environmental sustainability and crop nutritional properties: A case study of horticultural crops in north-eastern Italy. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.06.023

Gadd, G.M., 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49. doi:https://doi.org/10.1016/j.mycres.2006.12.001

Gadd, G.M., 2004. Mycotransformation of organic and inorganic substrates. Mycologist 18, 60–70. doi:https://doi.org/10.1017/S0269-915X(04)00202-2

Gadd, G.M., Sariaslani, S., 2017. Advances in Applied Microbiology, Advances in Applied Microbiology. Elsevier Science, Amsterdam, Amsterdam.

Gaillard, J., Thomas, M., Lazartigues, A., Bonnefille, B., Pallez, C., Dauchy, X., Feidt, C., Banas, D., 2016. Potential of barrage fish ponds for the mitigation of pesticide pollution in streams. Environ. Sci. Pollut. Res. 23, 23–35. doi:10.1007/s11356-015-5378-6

Gavinelli, F., Barcaro, T., Csuzdi, C., Blakemore, R.J., Marchan, D.F., Sosa, I. De, Dorigo, L., Lazzarini, F., Nicolussi, G., Dreon, A.L., Toniello, V., Pamio, A., Squartini, A., Concheri, G., Moretto, E., Paoletti, M.G., 2018. Importance of large, deep-burrowing and anecic earthworms in forested and cultivated areas (vineyards) of northeastern Italy. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.07.012

Geisen, S., Bonkowski, M., 2018. Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.05.021

Giannini, R., 2008. Selvicoltura e variabilità genetica: funzionalità e conservazione degli ecosistemi forestali., in: Atti III°Congresso Nazionale Di Selvicoltura, Taormina 16-19 Ottobre, Vol. I°. AISF, Taormina, pp. 55–59.

Giannini, R., Susmel, L., 2006. Foreste, boschi, arboricoltura da legno. Forest@ 3, 454–487.

Grinhut, T., Hadar, Y., Chen, Y., 2007. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol. Rev. 21, 179–189. doi:https://doi.org/10.1016/j.fbr.2007.09.003

Gruber, K., 2015. Deep influence of soil microbes. Nat. Plants 1. doi:doi:10.1038/nplants.2015.194

Habashi, H., Waez-Mousavi, S.M., 2018. Single-tree selection system effects on forest soil macrofauna biodiversity in mixed oriental beech stands. Appl. Soil Ecol. 123. doi:https://doi.org/10.1016/j.apsoil.2017.09.023

Heijden, M.G.A. Van Der, Horton, T.R., 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150. doi:10.1111/j.1365-2745.2009.01570.x

Hirschhorn, J.N., Daly, M.J., 2005. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95.

Hoffman, Y., Pomarède, D., Tully, R.B., Courtois, H.M., 2017. The dipole repeller. Nat. Astron. 1, 36. doi:10.1038/s41550-016-0036

Incerti, G., Bonanomi, G., Giannino, F., Rutigliano, F.A., Piermatteo, D., Castaldi, S., De Marco, A., Fierro, A., Fioretto, A., Maggi, O., Papa, S., Persiani, A.M., Feoli, E., De Santo, A.V., Mazzoleni, S., 2011. Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality. Appl. Soil Ecol. 49, 148–157. doi:10.1016/j.apsoil.2011.06.004

Istat, 1953. Annuario statistico dell’agricoltura italiana / Istituto centrale di statistica del regno d’Italia 1947-1950 [WWW Document]. Ist. Cent. di Stat. - Repubb. Ital. URL https://ebiblio.istat.it/digibib/Agricoltura/RAV0031603AnnStatAgr1947_50.pdf (accessed 4.1.94).

Jabiol, B., Feller, C., Grève, M.H., 2005. Quand l’humus est à l ’ origine de la pédologie. Etudes Gest. des Sols 12, 123–134.

Jones, R.J.A., Hiederer, R., Rusco, E., Montanarella, L., 2005. Estimating organic carbon in the soil of Europe for policy support. Eur. J. Soil Sci. 56, 655–671. doi:10.1111/j.1365-2389.2005.00728.x

Krogh (contributor), P.H., 2010. European Atlas of Soil Biodiversity. European Commission. doi:10.2788/94222

Lavelle, P., 2012. Soil as a Habitat, in: Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., Van der Putten, W.H. (Eds.), Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, pp. 1–27.

Levy-Booth, D.J., Campbell, R.G., Gulden, R.H., Hart, M.M., Powell, J.R., Klironomos, J.N., Pauls, K.P., Swanton, C.J., Trevors, J.T., Dunfield, K.E., 2007. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991. doi:https://doi.org/10.1016/j.soilbio.2007.06.020

Lowenfels, J., Lewis, W., 2010. Teaming with Microbes: The Organic Gardener’s Guide to the Soil Food Web. Timber Press Portland London, London.

Lugato, E., Bampa, F., Panagos, P., Montanarella, L., Jones, A., 2014. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Chang. Biol. 20, 3557‒3567. doi:10.1111/gcb.12551

Maaß, S., Caruso, T., Rillig, M.C., 2015. Functional role of microarthropods in soil aggregation. Pedobiologia (Jena). 58, 59‒63. doi:10.1016/j.pedobi.2015.03.001

Mazzoleni, S., Bonanomi, G., Incerti, G., Chiusano, M.L., Termolino, P., Mingo, A., Senatore, M., Giannino, F., Cartenì, F., Rietkerk, M., Lanzotti, V., 2015. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks? New Phytol. 205, 1195–1210. doi:10.1111/nph.13121

Mclanahan, S., 2004. Diverging destinies: How children are faring under the second demographic transition. Demography 41, 607–627. doi:10.1353/dem.2004.0033

Menta, C., Conti, F.D., Pinto, S., 2018. Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.05.020

Moscufo, M., De Martinis, G., 2017. Il valore della moneta in Italia dal 1861 al 2016, Tavole Statistiche pubblicate su sito web Istat [WWW Document]. ISTAT. URL http://www.istat.it/it/archivio/198758 (accessed 4.6.17).

Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems 9, n/a--n/a. doi:10.1029/2007GC001743

Nannipieri, P., Sequi, P., Fusi, P., 1996. Humus and enzyme activity. Humic Subst. Terr. Ecosyst. 293–328. doi:DOI: 10.1016/B978-044481516-3/50008-6

Nardi, S., Pizzeghello, D., Ertani, A., 2018. Hormone-like activity of the soil organic matter. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.04.020

Odling-Smee, F.J., Laland, K.N., Feldman, M.W., 2003. Niche Construction The Neglected Process in Evolution (MPB-37), Paperbook. ed. Princeton University Press, Princeton.

Olaetxea, M., Hita, D. De, Garcia, C.A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A.M., Berbara, R.L., Garcia-Mina, J.M., 2017. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Appl. Soil Ecol. doi:https://doi.org/10.1016/j.apsoil.2017.06.007

Pelosi, C., Römbke, J., 2018. Enchytraeids as bioindicators of land use and management. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.05.014

Pergola, M., Persiani, A., Palese, A.M., Meo, V. Di, Pastore, V., D’Adamo, C., Celano, G., 2018. Composting: The way for a sustainable agriculture. Appl. Soil Ecol. 123. doi:https://doi.org/10.1016/j.apsoil.2017.10.016

Piccolo, A., Mbagwu, J.S.C., 1999. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci. Soc. Am. J. 63, 1801–1810. doi:10.2136/sssaj1999.6361801x

Piccolo A.; Stevenson F.J., 1982. Infrared spectra of Cu, Pb, and Ca complexes of soil humic substances. Geoderma 27, 195–208. doi:0016-7061/82/0000-0000/$02.75

Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M.T., Guerri, G., Nannipieri, P., 2009. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils 45, 219–235. doi:10.1007/s00374-008-0345-8

Pinstrup-Andersen, P., Pandya-Lorch, R., 1998. Food security and sustainable use of natural resources: a 2020 Vision. Ecol. Econ. 26, 1–10. doi:https://doi.org/10.1016/S0921-8009(97)00067-0

Polverigiani, S., Franzina, M., Neri, D., 2018. Effect of soil condition on apple root development and plant resilience in intensive orchards. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.04.009

Ponge, J.-F., 2005. Emergent properties from organisms to ecosystems: towards a realistic approach. Biol. Rev. 80, 403–411. doi:10.1017/s146479310500672x

Ponge, J.-F., Pérès, G., Guernion, M., Ruiz-Camacho, N., Cortet, J., Pernin, C., Villenave, C., Chaussod, R., Martin-Laurent, F., Bispo, A., Cluzeau, D., 2013. The impact of agricultural practices on soil biota: A regional study. Soil Biol. Biochem. 67, 271–284. doi:http://dx.doi.org/10.1016/j.soilbio.2013.08.026

Puga-Freitas, R., Blouin, M., 2015. A review of the effects of soil organisms on plant hormone signalling pathways. Environ. Exp. Bot. 114, 104–116. doi:10.1016/j.envexpbot.2014.07.006

Rillig, M.C., Mummey, D.L., 2006. Mycorrhizas and soil structure. New Phytol. 171, 41–53. doi:10.1111/j.1469-8137.2006.01750.x

Ripple, W.J., Wolf, C., Galetti, M., Newsome, T.M., Green, T.L., Alamgir, M., Crist, E., Mahmoud, M.I., Laurance, W.F., 2018. The Role of Scientists’ Warning in Shifting Policy from Growth to Conservation Economy. Bioscience (in press). doi:10.1093/biosci/biy009

Ritz, K., Young, I.M., 2004. Interactions between soil structure and fungi. Mycologist 18, 52–59. doi:https://doi.org/10.1017/S0269-915X(04)00201-0

Sechi, V., De Goede, R.G.M., Rutgers, M., Brussaard, L., Mulder, C., 2017. A community trait-based approach to ecosystem functioning in soil. Agric. Ecosyst. Environ. 239. doi:10.1016/j.agee.2017.01.036

Spurgeon, D.J., Keith, A.M., Schmidt, O., Lammertsma, D.R., Faber, J.H., 2013. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 13, 46. doi:10.1186/1472-6785-13-46

Stellin, F., Gavinelli, F., Stevanato, P., Concheri, G., Squartini, A., Paoletti, M.G., 2018. Effects of different concentrations of glyphosate (Roundup 360®) on earthworms (Octodrilus complanatus, Lumbricus terrestris and Aporrectodea caliginosa) in vineyards in the North-East of Italy. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.07.028

Stevenson, F.J., 1983. Humus Chemistry: Genesis, Composition, Reactions. Nature 303, 835–836. doi:10.1016/0146-6380(83)90043-8

Tiebel K, H.F., S, W., 2018. Soil seed banks of pioneer tree species in European temperate forests: a review. iForest - Biogeosciences For. 48–57. doi:10.3832/ifor2400-011

Topoliantz, S., Ponge, J.F., Viaux, P., 2000. Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant Soil 225, 39–51. doi:10.1023/A:1026537632468

Weigelhofer, G., Fuchsberger, J., Teufl, B., Welti, N., Hein, T., 2012. Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in Agricultural Catchments. J. Environ. Qual. 41, 373–379. doi:10.2134/jeq2010.0436

Wohlleben, P., 2016. The Hidden Life of Trees: What They Feel, How They Communicate – Discoveries from a Secret World. Greystone Books, Canada.

Zanella, A., 2018. Humans, humus, and universe. Appl. Soil Ecol. 123, in Press. doi:https://doi.org/10.1016/j.apsoil.2017.07.009

Zanella, A., Ascher-Jenull, J., 2018. Editorial. Appl. Soil Ecol. 122, 1–9. doi:https://doi.org/10.1016/j.apsoil.2017.11.029

Zanella, A., Berg, B., Ponge, J.-F., Kemmers, R.H., 2018a. Humusica 1, article 2: Essential bases - Functional considerations. Appl. Soil Ecol. 122, 22–41. doi:10.1016/j.apsoil.2017.07.010

Zanella, A., Bolzonella, C., Lowenfels, J., Ponge, J.F., Bouché, M., Saha, D., Kukal, S.S., Fritz, I., Savory, A., Blouin, M., Sartori, L., Tatti, D., Kellermann, L.A., Trachsel, P., Burgos, S., Minasny, B., Fukuoka, M., 2018b. Humusica 2, article 19: Techno humus systems and global change – conservation agriculture and 4/1000 proposal. Appl. Soil Ecol. 122, 271–296. doi:10.1016/j.apsoil.2017.10.036

Zanella, A., Geisen, S., Ponge, J.-F., Jagers, G., Benbrook, C., Dilli, T., Vacca, A., Kwiatkowska-Malina, J., Aubert, M., Fusaro, S., De Nobili, M., Lomolino, G., Gomiero, T., 2018c. Humusica 2, article 17: Techno humus systems and global change - Three crucial questions. Appl. Soil Ecol. 122, 237–253. doi:10.1016/j.apsoil.2017.10.010

Zanella, A., Jabiol, B., Ponge, J.-F., Sartori, G., Waal, R. De, Delft, B. Van, Graefe, U., Cools, N., Katzensteiner, K., Hager, H., Englisch, M., Brethes, A., Broll, G., Gobat, J.M., Brun, J.-J., Milbert, G., Kolb, E., Wolf, U., Frizzera, L., Galvan, P., Kolli, R., Baritz, R., Kemmers, R., Vacca, A., Serra, G., Banas, D., Garlato, A., Chersich, S., Klimo, E., Langohr, R., 2011. European Humus Forms Reference Base 2011. E-Book. Dep. TESAF, Università degli Studi di Padova (Italy); HAL, Archives Ouvertes,CNRS (France), https://hal.archives-ouvertes.fr/file/index/docid/561795/filename/Humus_Forms_ERB_31_01_2011.pdf.

Zanella, A., Ponge, J.-F., Briones, M.J.I., 2018d. Humusica 1, article 8: Terrestrial humus systems and forms - Biological activity and soil aggregates, space-time dynamics. Appl. Soil Ecol. 122, 103–137. doi:10.1016/j.apsoil.2017.07.020

Zanella, A., Ponge, J.-F., Fritz, I., Pietrasiak, N., Matteodo, M., Nadporozhskaya, M., Juilleret, J., Tatti, D., Le Bayon, R.-C., Rothschild, L., Mancinelli, R., Rotschild, L., Mancinelli, R., 2018e. Humusica 2, article 13: Para humus systems and forms. Appl. Soil Ecol. 122, 181–199. doi:10.1016/j.apsoil.2017.09.043

Zanella, A., Ponge, J.-F., Gobat, J.-M., Juilleret, J., Blouin, M., Aubert, M., Chertov, O., Rubio, J.L., 2018f. Humusica 1, article 1: Essential bases - Vocabulary. Appl. Soil Ecol. 122, 10–21. doi:10.1016/j.apsoil.2017.07.004

Zanella, A., Ponge, J.-F., Hager, H., Pignatti, S., Galbraith, J., Chertov, O., Andreetta, A., De Nobili, M., 2018g. Humusica 2, article 18: Techno humus systems and global change - Greenhouse effect, soil and agriculture. Appl. Soil Ecol. 122, 254–270. doi:10.1016/j.apsoil.2017.10.024

Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Gobat, J.-M., Le Bayon, R.-C., Aubert, M., De Waal, R., Van Delft, B., Vacca, A., Serra, G., Chersich, S., Andreetta, A., Cools, N., Englisch, M., Hager, H., Katzensteiner, K., Brêthes, A., De Nicola, C., Testi, A., Bernier, N., Graefe, U., Juilleret, J., Banas, D., Garlato, A., Obber, S., Galvan, P., Zampedri, R., Frizzera, L., Tomasi, M., Menardi, R., Fontanella, F., Filoso, C., Dibona, R., Bolzonella, C., Pizzeghello, D., Carletti, P., Langohr, R., Cattaneo, D., Nardi, S., Nicolini, G., Viola, F., 2018h. Humusica 1, article 4: Terrestrial humus systems and forms - Specific terms and diagnostic horizons. Appl. Soil Ecol. 122, 56–74. doi:10.1016/j.apsoil.2017.07.005

Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Le Bayon, R.-C., Gobat, J.-M., Aubert, M., De Waal, R., Van Delft, B., Vacca, A., Serra, G., Chersich, S., Andreettal, A., Kõlli, R., Brun, J.-J., Cools, N., Englisch, M., Hager, H., Katzensteiner, K., Brêthes, A., De Nicolas, C., Testi, A., Bernier, N., Graefe, U., Wolf, U., Juilleret, J., Garlato, A., Obber, S., Galvan, P., Zampedri, R., Frizzera, L., Tomasi, M., Banas, D., Bureau, F., Tatti, D., Salmon, S., Menardi, R., Fontanella, F., Carraro, V., Pizzeghello, D., Concheri, G., Squartini, A., Cattaneo, D., Scattolin, L., Nardi, S., Nicolini, G., Viola, F., 2018i. Humusica 1, article 5: Terrestrial humus systems and forms - Keys of classification of humus systems and forms. Appl. Soil Ecol. 122, 75–86. doi:10.1016/j.apsoil.2017.06.012

Zanella, A., Ponge, J.-F., Juilleret, J., Bernier, N., Topoliantz, S., Blouin, M., 2016. Soil Aggregate and Humus Sytems, in: ESSC 2016 (European Society for SoilConservation) Conference. Cluj-Napoca, Romania June 15-18. Oral Preentation in Session 6: Soil Conservation Issues in Organic Farming and Conservation Agriculture.

Zanella, A., Ponge, J.-F., Matteodo, M., 2018j. Humusica 1, article 7: Terrestrial humus systems and forms - Field practice and sampling problems. Appl. Soil Ecol. 122, 92–102. doi:10.1016/j.apsoil.2017.05.028

Zanella, A., Ponge, J.-F., Topoliantz, S., Bernier, N., Juilleret, J., 2018k. Humusica 2, article 15: Agro humus systems and forms. Appl. Soil Ecol. 122, 204–219. doi:10.1016/j.apsoil.2017.10.011

Bulletin of Geography. Physical Geography Series

Downloads

  • PDF

Published

2018-05-18

How to Cite

1.
ZANELLA, Augusto, ASCHER-JENULL, Judith, PONGE, Jean-François, BOLZONELLA, Cristian, BANAS, Damien, NOBILI, Maria De, FUSARO, Silvia and GIANNINI, Raffaello. Humusica - Soil biodiversity and global change. Bulletin of Geography. Physical Geography Series. Online. 18 May 2018. No. 14, pp. 15-36. [Accessed 28 June 2025]. DOI 10.2478/bgeo-2018-0002.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 14 (2018)

Section

Articles

License

Copyright (c) 2018 Bulletin of Geography. Physical Geography Series

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 1491
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Humusica, soil organic matter, soil structure, soil biology, soil functioning, agriculture, organic agriculture, gross domestic product, humus forms classification, forest humus forms, TerrHum
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop