Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Critical Neumann problems with asymmetric nonlinearity
  • Home
  • /
  • Critical Neumann problems with asymmetric nonlinearity
  1. Home /
  2. Archives /
  3. Vol 56, No 1 (September 2020) /
  4. Articles

Critical Neumann problems with asymmetric nonlinearity

Authors

  • Francisco Odair de Paiva
  • Wallisom Rosa https://orcid.org/0000-0002-3071-9193

Keywords

Neumann problem, critical nonlinearity, asymmetric nonlinearity, varialtional methods

Abstract

We prove an existence result for a semilinear elliptic equation with superlinear and asymmetric nonlinearity. The asymmetry that we consider is of the type: linear at $-\infty$ and superlinear at $+\infty$. To obtain these results we apply a Linking Theorem.

References

Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critically nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, (1991), 9–25.

D. Arcoya and S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at −∞ and superlinear at +∞, Math. Z. 219 (1995), no. 4, 499–513.

H. Brezis and L. Niremberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev expoents. Comm. Pure Appl. Math. 36 (1983), 437–477.

M. Calanchi and B. Ruf, Elliptic equations with one-side critical growth, Electron. J. Differential Equations 2002 (2002), no. 89, 1–21.

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 463–470.

G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 341–350.

J. Chabrowski and B. Ruf, On the critical Neumann problem with perturbations of lower order, Colloq. Math. 108 (2007), no. 2, 225–246.

J. Chabrowski and J. Yang, Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent, Rend. Sem. Mat. Univ. Padova 110 (2003), 1–24.

D.G. De Figueiredo and J. Yang, Critical superlinear Ambrosetti–Prodi problems, Topol. Methods Nonlinear Anal. 14 (1999), 59–80.

L. Gasinski and N. S. Papageorgiou , Multiple solutions for nonlinear Neumann problems with asymmetric reaction via Morse theory, Adv. Nonlinear Stud. 11 (2011), 781–808.

L. Gasinski and N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Commun. Pure Appl. Anal. 13 (2014), 1491–1512.

L. Gasinski and N.S. Papageorgiou, Resonant equations with the Neumann p-Laplacian plus an indefinite potential, J. Math. Anal. Appl. 422 (2015), 1146–1179.

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth non-linearities in semilinear elliptic equations. Adv. Differential Equations 2 (1997), no. 4, 555–572.

D. Gilbargn and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, New York, 1983.

N.S. Papageorgiou and G. Smyrlis, A multiplicity theorems for Neumann problems with asymmetric nonlinearity, Ann. Mat. Pura Appl. (4) 189 (2010), no. 2, 253–272.

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math Soc., Providence, R.I., 1986.

E.A. Silva, Linking theorems and applications to semilinear elliptic problems at resoance. Nonlinear Anal. 16 (1991), 455–477.

X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differentail Equations 93 (1991), 283–310.

M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, New York, Birkhäuser, 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-09-05

How to Cite

1.
DE PAIVA, Francisco Odair and ROSA, Wallisom. Critical Neumann problems with asymmetric nonlinearity. Topological Methods in Nonlinear Analysis. Online. 5 September 2020. Vol. 56, no. 1, pp. 117 - 127. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 56, No 1 (September 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop