Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On supports of evolution systems of measures for converging in law non-homogenous Markov processes
  • Home
  • /
  • On supports of evolution systems of measures for converging in law non-homogenous Markov processes
  1. Home /
  2. Archives /
  3. Vol 55, No 1 (March 2020) /
  4. Articles

On supports of evolution systems of measures for converging in law non-homogenous Markov processes

Authors

  • Grzegorz Guzik

Keywords

Core of an evolution semiattractor, set-valued process, two-parameters semigroup of Markov operators, evolution system of measures, stochastic flow, time-dependent stochastic partial differential equation

Abstract

We obtain an explicit form of supports of strongly mixing evolution system of measures naturally connected with non-homogenous Markov process induced by time-dependent SPDEs. We show that considered supports one can get as a net of limit sets determined by a two-parameters semigroup of set-valued maps induced by transition probabilities.

References

L. Arnold, Random Dynamical Systems, Springer, Berlin 1998.

R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer, New York, 2008.

X. Chen, J. Duan and M. Scheutzow, Evolution system of measures for stochastic flows, Dyn. Syst. 26 (2011), no. 3, 323–334.

H. Crauel, Random point attractors versus random set attractors, J. Lond. Math. Soc. (2) 63 (2001), 413–427.

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations 9 (1997), no. 2, 307–341.

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), 365–393.

G. Da Prato and M. Röckner, A note on evolution systems of measures for timedependent stochastic differential equations, Progr. Probab. 59 (2007), 115–122.

G. Guzik, Asymptotic stability of discrete cocycles, J. Difference Equ. Appl. 21 (2015), no. 11, 1044–1057.

G. Guzik, Asymptotic properties of multifunctions, families of measures and Markov operators associated with cocycles, Nonlinear Anal. 130 (2016), 59–75.

G. Guzik, Semiattractors of set-valued semiflows, J. Math. Anal. Appl. 435 (2016), 1321–1334.

G. Guzik, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl. 449 (2017), 382–396.

R. Kapica, Random iteration and Markov operators, J. Difference Equ. Appl. 22 (2016), no. 2, 295–305.

P.E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, AMS Mathematical Surveys and Monographs, Vol. 176, American Mathematical Society, Providence, Rhode Island, 2011.

K. Kuratowski, Topology, vol. I, Academic Press, New York, 1966.

A. Lasota and M.C. Mackey, Chaos, Fractals and Noise. Stochastic Aspect of Dynamics, Springer–Verlag, New York, 1994.

A. Lasota and J. Myjak, Semifractals, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 1, 5–21.

A. Lasota and J. Myjak, Markov operators and fractals, Bull. Pol. Acad. Sci. Math. 45 (1997), no. 2, 197–210.

A. Lasota and J. Myjak, Attractors of multifunctions, Bull. Pol. Acad. Sci. Math. 48 (2000), no. 3, 319–334.

G. Manjunath and H. Jaeger, The dynamics of random difference equations is remodeled by closed relations, SIAM J. Math. Anal. 46 (2014), no. 1, 459–483.

Sh.-X. Ouyang and M. Röckner, Time inhomogenous generalized Mehler semigroups (2012), arXiv:1009.5314v3.

Sh.-X. Ouyang and M. Röckner, Time inhomogenous generalized Mehler semigroup and skew convolution equations, Forum Math. 28 (2016), no. 2, 339–376.

R. Wooster, Evolution systems of measures for non-autonomous Ornstein–Uhlenbeck processes with Lévy noise, Commun. Stoch. Anal. 5 (2011), no. 2, 353–370.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-01-19

How to Cite

1.
GUZIK, Grzegorz. On supports of evolution systems of measures for converging in law non-homogenous Markov processes. Topological Methods in Nonlinear Analysis. Online. 19 January 2020. Vol. 55, no. 1, pp. 19 - 36. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 55, No 1 (March 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop