About positive $W_{loc}^{1,\Phi}(\Omega)$-solutions to quasilinear elliptic problems with singular semilinear term

Carlos Alberto Santos, José Valdo Gonçalves, Marcos Leandro Carvalho

DOI: http://dx.doi.org/10.12775/TMNA.2019.009

Abstract


This paper deals with the existence, uniqueness and regularity of positive
$W_{\rom loc}^{1,\Phi}(\Omega)$-solutions of singular elliptic problems on a~smooth bounded domain with Dirichlet boundary conditions involving the $\Phi$-Laplacian operator.
The proof of the existence is based on a variant of the generalized Galerkin method that we developed inspired by ideas of Browder \cite{Browder} and a comparison principle. By the use of a kind of Moser's iteration scheme we show the
$L^{\infty}(\Omega)$-regularity for positive solutions.


Keywords


$\Phi$-Laplacian; Orlicz--Sobolev spaces; singular, Galerkin method

Full Text:

PREVIEW FULL TEXT

References


R.A. Adams and J.F. Fournier, Sobolev Spaces, Academic Press, 2003.

L. Boccardo and J. Casado-Dı́az, Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence, Asymptot. Anal. 86 (2014), 1–15.

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), 363–380.

F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 1–39.

A. Canino, L. Montoro, B. Sciunzi and M. Squassina, Nonlocal problems with singular nonlinearity, Bull. Sci. Math. 141 (2017), no. 3, 223–250.

A. Canino and B. Sciunzi, A uniqueness result for some singular semilinear elliptic equations, Commun. Contemp. Math. 18 (2016), 1550084.

A. Canino, B. Sciunzi and A. Trombetta, Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl. 23 (2016), 23:8.

M.L. Carvalho, J.V. Gonçalves and E.D. Silva, On quasilinear elliptic problems without the Ambrosetti–Rabinowitz condition, J. Math. Anal. Appl. 426 (2015), 466–483.

Y. Chu and W. Gao, Existence of solutions to a class of quasilinear elliptic problems with nonlinear singular terms, Bound. Value Probl. 2013 (2013), no. 229, 1–8.

P. Clément, B. de Pagter, G. Sweers and F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math. 1 (2004), 241–267.

M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222.

G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), 405–412.

L.M. de Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), 181–195.

D.G. de Figueiredo, Lectures on the Ekeland variational principle with applications and detours, Tata Institute Fundamental Research Lectures on Mathematics and Physics, vol. 81, Springer–Verlag, 1989.

N. Fukagai, M. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN , Funkcial. Ekvac. 49 (2006), 235–267.

N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problem, Ann. Mat. Pura Appl. 186 (2007), 539–564.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, 1998.

J.V.A Gonçalves and C.A.P. Santos, Classical solutions of singular Monge–Ampére equations in a ball, J. Math. Anal. Appl. 305 (2005), 240–252.

J.P. Gossez, Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear Analysis, Function Spaces and Applications (Proc. Spring School, Horni Bradlo, 1978), Teubner, Leipzig, 1979, 59–94.

J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.

B. Guo, W. Gao and Y. Gao, Study of solutions for a quasilinear elliptic problem with negative exponents, arXiv:1309.0663.

S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge–Ampére equations, Discrete Contin. Dyn. Syst. 16 (2006), 705–720.

S. Karlin and L. Nirenberg, On a Theorem of P. Nowosad, J. Math. Anal. Appl. 17 (1967), 61–67.

A.V. Lair and A.W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 211 (1997), 371–385.

sc A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730.

A.C. Lazer and P.J. McKenna, On Singular Boundary Value Problems for the Monge–Ampére Operator, J. Math. Anal. Appl. 197 (1996), 341–362.

J.L. Lions, Quelques Méthodes de Résolution des Probléms Aux Limites Non Lineáires, Dunod, Gauthier–Villars, 1969.

J. Liu, Q. Zhang and C. Zhao, Existence of positive solutions for p(x)-Laplacian equations with a singular nonlinear term, Electron. J. Differential Equations 155 (2014), 1–21.

M. Mihailescu and D. Repovs, Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz–Sobolev spaces, Appl. Math. Comput. 217 (2011), 6624–6632.

J.R. Munkres, Topology, Person Education, 2000.

L. Orsina and F. Petitta, A Lazer–McKenna type problem with measures, Differential Integral Equations 29 (2016), 19–36.

P. Pucci and J.B. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser, 2007.

V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336–369.

M.N. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker, 1985.

Z. Tan and F. Fang, Orlicz-Sobolev vs Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402 (2013), 348–370.

S. Yijing and Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), 909–922.

Q. Zhang, Existence and asymptotic behavior of positive solutions to p(x)-Laplacian equations with singular nonlinearities, J. Inequal. Appl., Article ID 19349 (2007), 9 pp.

Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal. 57 (2004), 473–484.


Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism