Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Asymptotically almost periodic motions in impulsive semidynamical systems
  • Home
  • /
  • Asymptotically almost periodic motions in impulsive semidynamical systems
  1. Home /
  2. Archives /
  3. Vol 49, No 1 (March 2017) /
  4. Articles

Asymptotically almost periodic motions in impulsive semidynamical systems

Authors

  • Everaldo Mello Bonotto
  • Luciene P. Gimenes
  • Ginnara M. Souto

Keywords

Impulsive semidynamical systems, almost periodic motions, asymptotic motions, stability

Abstract

Recursive properties on impulsive semidynamical systems are considered. We obtain results about almost periodic motions and asymptotically almost periodic motions in the context of impulsive systems. The concept of asymptotic almost periodic motions is introduced via time reparametrizations. We also present asymptotic properties for impulsive systems and for their associated discrete systems.

References

N.P. Bhatia and G.P. Szegö, Stability theory of dynamical systems, Grundlehren Math. Wiss., Band 161, Springer–Verlag, New York, 1970; reprint of the 1970 original in: Classics Math., Springer–Verlag, Berlin, 2002.

H. Bohr, Zur theorie der fastperiodischen funktionen. II: Zusammenhang der fastperiodischen funktionen mit funktionen von unendlich vielen variabeln; gleichmssige approximation durch trigonometrische summen, Acta Math. 46 (1925), 101–214.

E.M. Bonotto, Flows of characteristic 0+ in impulsive semidynamical system, J. Math. Anal. Appl. 332 (2007), no. 1, 81–96.

E.M. Bonotto, M.C. Bortolan, A.N. Carvalho and R. Czaja, Global attractors for impulsive dynamical systems – a precompact approach, J. Differential Equations 259 (7) (2015), 2602–2625.

E.M. Bonotto and D.P. Demuner, Autonomous dissipative semidynamical systems with impulses, Topol. Methods Nonlinear Anal. 41 (2013), no. 1, 1–38.

E.M. Bonotto and D.P. Demuner, Attractors of impulsive dissipative semidynamical systems, Bull. Sci. Math. 137 (2013), 617–642.

E.M. Bonotto and M. Federson, Topological conjugation and asymptotic stability in impulsive semidynamical systems, J. Math. Anal. Appl. 326 (2007), 869–881.

E.M. Bonotto and M. Federson, Poisson stability for impulsive semidynamical system, Nonlinear Anal. 71 (2009), no. 12, 6148–6156.

E.M. Bonotto, L.P. Gimenes and G.M. Souto, On Jack Hale’s problem for impulsive systems, J. Differential Equations 259 (2015), 642–665.

E.M. Bonotto and M.Z. Jimenez, On impulsive semidynamical systems: minimal, recurrent and almost periodic motions, Topol. Methods Nonlinear Anal. 44 (2014), no. 1, 121–141.

E.M. Bonotto and M.Z. Jimenez, Weak almost periodic motions, minimality and stability in impulsive semidynamical systems, J. Differential Equations 256 (2014), 1683–1701.

D.N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi, Publishing Corporation, 2009.

K. Ciesielski, Sections in semidynamical systems, Bull. Polish Acad. Sci. Math. 40 (1992), 297–307.

K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bull. Polish Acad. Sci. Math. 52 (2004), 71–80.

K. Ciesielski, On stability in impulsive dynamical systems, Bull. Polish Acad. Sci. Math. 52 (2004), 81–91.

K. Ciesielski, On time reparametrization and isomorphisms of impulsive dynamical system, Ann. Polon. Math. 84 (2004), 1–25.

C. Ding, Lyapunov quasi-stable trajectories, Fund. Math. 220 (2013), 139–154.

M. Fréchet, Les fonctions asymptotiquement presque-periodiques continues, Comptes Rendus de l’Académie des Sciences 213 (1941), 520–522.

Y. Hino, T. Naito, V.M. Nguyen and J.S. Shin, Almost periodic solutions of differential equations in Banach spaces, Stability and Control: Theory, Methods and Applications 15, Taylor and Francis, London, 2002.

S.K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990), 120–128.

S.K. Kaul, On impulsive semidynamical systems II, Recursive Properties, Nonlinear Anal. 16 (1991), no. 7/8, 635–645.

S.K. Kaul, On impulsive semidynamical systems III, Lyapunov stability, Recent Trends in Differential Equations, World Sci. Ser. Appl. Anal. 1, Publishing, River Edge, NJ, (1992), 335–345.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-10-05

How to Cite

1.
BONOTTO, Everaldo Mello, GIMENES, Luciene P. and SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis. Online. 5 October 2016. Vol. 49, no. 1, pp. 133 - 163. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 49, No 1 (March 2017)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop