Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Bifurcation and multiplicity results for critical p-Laplacian problems
  • Home
  • /
  • Bifurcation and multiplicity results for critical p-Laplacian problems
  1. Home /
  2. Archives /
  3. Vol 47, No 1 (March 2016) /
  4. Articles

Bifurcation and multiplicity results for critical p-Laplacian problems

Authors

  • Kanishka Perera
  • Marco Squassina
  • Yang Yang

DOI:

https://doi.org/10.12775/TMNA.2015.093

Keywords

p-Laplacian, critical nonlinearity, bifurcation, multiplicity, existence, abstract critical point theory, Z^2-cohomological index, pseudo-index

Abstract

We prove a bifurcation and multiplicity result that is independent of the dimension N for a critical p-Laplacian problem that is the analog of the Brezis-Nirenberg problem for the quasilinear case. This extends a result in the literature for the semilinear case p = 2 to all p in (1;infty). In particular, it gives a new existence result when N \le p^2. When p \neq 2 the nonlinear operator -\Delta_p has no linear eigenspaces, so our extension is nontrivial and requires a new abstract critical point theorem that is not based on linear subspaces. We prove a new abstract result based on a pseudoindex related to the Z^2-cohomological index that is applicable here.

References

G. Arioli and F. Gazzola, Some results on p-Laplace equations with a critical growth term, Differential Integral Equations 11 (1998), 311-326.

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572.

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.

D. Cao, S. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal. 262 (2012), 2861-2902.

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincare Anal. Non Lineaire 2 (1985), 463-470.

G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 341-350.

M. Degiovanni and S. Lancelotti, Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct. Anal. 256 (2009), 3643-3659.

G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations 7 (2002), 1257-1280.

H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), 57-77.

E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174.

D. Fortunato and E. Jannelli, Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 205-213.

J.G. Azorero and I. Peral, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389-1430.

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902.

K. Perera, Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal. 21 (2003), 301-309.

K. Perera, R. P. Agarwal and D. O'Regan, Morse theoretic aspects of p-Laplacian type operators, 161 Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.

K. Perera and A. Szulkin, p-Laplacian problems where the nonlinearity crosses an eigenvalue, Discrete Contin. Dyn. Syst. 13 (2005), 743-753.

M. Schechter and W. Zou, On the Brezis-Nirenberg problem, Arch. Ration. Mech. Anal. 197 (2010), 337-356.

Y. Wu and Y. Huang, Infinitely many sign-changing solutions for p-Laplacian equation involving the critical Sobolev exponent, Bound. Value Probl. 149, 10, 2013.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2016-03-01

How to Cite

1.
PERERA, Kanishka, SQUASSINA, Marco and YANG, Yang. Bifurcation and multiplicity results for critical p-Laplacian problems. Topological Methods in Nonlinear Analysis. Online. 1 March 2016. Vol. 47, no. 1, pp. 187 - 194. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2015.093.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 47, No 1 (March 2016)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 9

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop