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Abstract. We prove a bifurcation and multiplicity result that is indepen-
dent of the dimension N for a critical p-Laplacian problem that is an ana-

log of the Brezis–Nirenberg problem for the quasilinear case. This extends

a result in the literature for the semilinear case p = 2 to all p ∈ (1,∞). In

particular, it gives a new existence result when N < p2. When p 6= 2 the

nonlinear operator −∆p has no linear eigenspaces, so our extension is non-

trivial and requires a new abstract critical point theorem that is not based

on linear subspaces. We prove a new abstract result based on a pseudo-
index related to the Z2-cohomological index that is applicable here.

1. Introduction and main results

Elliptic problems with critical nonlinearities have been widely studied in the

literature. Let Ω be a bounded domain in R
N , N ≥ 2, with Lipschitz boundary.
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In the celebrated paper [4], Brézis and Nirenberg considered the problem

(1.1)







−∆u = λu+ |u|2
∗−2 u in Ω,

u = 0 on ∂Ω,

when N ≥ 3, where 2∗ = 2N/(N − 2) is the critical Sobolev exponent. Among

other things, they proved that this problem has a positive solution when N ≥ 4

and 0 < λ < λ1, where λ1 > 0 is the first Dirichlet eigenvalue of −∆ in Ω.

Capozzi et al. [6] extended this result by proving the existence of a nontrivial

solution for all λ > 0 when N ≥ 4. The existence of infinitely many solutions

for all λ > 0 was established by Fortunato and Jannelli [12] when N ≥ 4 and Ω

is a ball, and by Devillanova and Solimini [9] when N ≥ 7 and Ω is an arbitrary

bounded domain (see also Schechter and Zou [18]).

Garćıa Azorero and Peral Alonso [13], Egnell [10], and Guedda and Véron

[14] studied the corresponding problem for the p-Laplacian

(1.2)







−∆p u = λ |u|p−2 u+ |u|p
∗−2 u in Ω,

u = 0 on ∂Ω,

when 1 < p < N , where ∆p u = div(|∇u|p−2∇u) is the p-Laplacian of u and

p∗ = Np/(N − p). They proved that this problem has a positive solution when

N ≥ p2 and 0 < λ < λ1, where λ1 > 0 is the first Dirichlet eigenvalue of

−∆p in Ω. Degiovanni and Lancelotti [8] extended their result by proving the

existence of a nontrivial solution when N ≥ p2 and λ > λ1 is not an eigenvalue,

and when N2/(N + 1) > p2 and λ ≥ λ1 (see also Arioli and Gazzola [1]). The

existence of infinitely many solutions for all λ > 0 was recently established by

Cao et al. [5] when N > p2 + p (see also Wu and Huang [19]).

On the other hand, Cerami et al. [7] proved the following bifurcation and

multiplicity result for problem (1.1) that is independent of N and Ω. Let 0 <

λ1 < λ2 ≤ λ3 ≤ . . . → +∞ be the Dirichlet eigenvalues of −∆ in Ω, repeated

according to multiplicity, let

S = inf
u∈H1

0
(Ω)\{0}

‖∇u‖
2
2

‖u‖
2
2∗

be the best constant for the Sobolev imbedding H1
0 (Ω) →֒ L2∗(Ω) when N ≥ 3,

and let | · | denote the Lebesgue measure in R
N . If λk ≤ λ < λk+1 and

λ > λk+1 −
S

|Ω|
2/N

,

and m denotes the multiplicity of λk+1, then problem (1.1) has m distinct pairs

of nontrivial solutions ±uλ
j , j = 1, . . . ,m, such that uλ

j → 0 as λ ր λk+1 (see

[7, Theorem 1.1]).


