Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A homotopical property of attractors
  • Home
  • /
  • A homotopical property of attractors
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

A homotopical property of attractors

Authors

  • Rafael Ortega
  • Jaime Jorge Sánchez-Gabites

Keywords

Attractor, homeomorphism, fundamental group, finitely generated, Antoine necklace, Antoine sphere

Abstract

We construct a 2-dimensional torus T ⊆ R3 having the property that it cannot be an attractor for any homeomorphism of R3. To this end we show that the fundamental group of the complement of an attractor has certain finite generation property that the complement of T does not have.

References

L. Antoine, Sur l’homomorphie de figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221–325.

L. Antoine, Sur les ensembles parfaits partout discontinus, C.R. Acad. Sci. Paris 173 (1921), 284–285.

R.H. Bing, Locally tame sets are tame, Ann. Math. (2) 59 (1954), 145–158.

R.H. Bing, Approximating surfaces with polyhedral ones, Ann. Math. 65 (1957), 456–483.

N.P. Bhatia and G.P. Szego, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer–Verlag, 1970.

S. Crovisier and M. Rams, IFS attractors and Cantor sets, Topology Appl. 153 (2006), 1849–1859.

P.F. Duvall and L.S. Husch, Attractors of iterated function systems, Proc. Amer. Math. Soc. 116 (1992), 279–284.

B.M. Garay, Strong cellularity and global asymptotic stability, Fund. Math. 138 (1991), 147–154.

B. Gunther, A compactum that cannot be an attractor of a self-map on a manifold, Proc. Amer. Math. Soc. 120 (1994), 653–655.

B. Gunther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), 321–329.

V. Jimenez and J. Llibre, A topological characterization of the !-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math. 216 (2007), 677–710.

V. Jimenez and D. Peralta-Salas, Global attractors of analytic plane flows, Ergodic Theory Dynam. Systems 29 (2009), 967–981.

H. Kato, Attractors in Euclidean spaces and shift maps on polyhedra, Houston J. Math. 24 (1998), 671–680.

E.E. Moise, Geometric topology in dimensions 2 and 3, Springer–Verlag”, 1977.

D. Rolfsen, Knots and Links, AMS Chelsea Publishing, 2003.

J.J. Sanchez-Gabites, How strange can an attractor for a dynamical system in a 3-manifold look?, Nonlinear Anal. 74 (2011), 6162–6185.

J.J. Sanchez-Gabites, Arcs, balls, and spheres that cannot be attractors in R3, submitted, http://arxiv.org/abs/1406.5482

J.M.R. Sanjurjo, Multihomotopy, Cech spaces of loops and shape groups, Proc. London Math. Soc. (3) 69 (1994), 330–344.

R.B. Sher, Concerning wild Cantor sets in E3, Proc. Amer. Math. Soc. 19 (1968), 1195–1200.

E.H. Spanier, Algebraic Topology, McGraw–Hill Book Co., 1966.

D.G. Wright, Rigid sets in En, Pacific J. Math. 121 (1986), 245–256.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • Full text

Published

2015-12-01

How to Cite

1.
ORTEGA, Rafael and SÁNCHEZ-GABITES, Jaime Jorge. A homotopical property of attractors. Topological Methods in Nonlinear Analysis. Online. 1 December 2015. Vol. 46, no. 2, pp. 1089 - 1106. [Accessed 1 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 417
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop