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A HOMOTOPICAL PROPERTY OF ATTRACTORS

Rafael Ortega — Jaime J. Sánchez-Gabites

Abstract. We construct a 2-dimensional torus T ⊆ R3 having the prop-
erty that it cannot be an attractor for any homeomorphism of R3. To this
end we show that the fundamental group of the complement of an attractor
has certain finite generation property that the complement of T does not
have.

1. Introduction

Given a manifold M and a dynamical system defined on it, we say that

a compact set K ⊆ M is an attractor if it is invariant, Lyapunov stable and

there is a neighbourhood U = U(K) such that all orbits starting at U converge

to the set K. This definition leads to the following question: what compact sets

can be realized as attractors of some dynamical system? In the last thirty years

several authors have dealt with this question and the known results depend

critically on the type of dynamical system and the dimension of the ambient

space. For continuous flows we refer to [5], [8], [10], [11], [12], [16], [18] and to

[6], [7], [9], [13], [17] for the discrete case.

In the present paper we assume that the ambient space is M = R3 and the

system is discrete, produced by a homeomorphism f : R3 → R3. The general

(unsolved) problem is to describe the class of compact sets K ⊆ R3 which are
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attractors for some h. Our more modest goal will be to construct a curious

example of a set that cannot be realized as an attractor. In the process we will

find an abstract homotopical obstruction that can be of independent interest.

To describe our result let us consider one of the most natural attractors in the

Euclidean space, the torus of revolution T ⊆ R3. We aim at constructing a set

T ⊆ R3 that is homeomorphic to T but cannot be an attractor of any h. At first

sight the existence of T may seem paradoxical but those readers who are familiar

with topology in three dimensions will probably agree that T is conceivable as

long as it is a wild surface. Roughly speaking, a surface S ⊆ R3 is wild if it

contains a point p such that S cannot be flattened within R3 near p. There is

nothing particular about the torus in our construction and similar examples of

different genus can be constructed. In particular we refer to [17] for a different

construction in the case of the sphere.

At this point it seems convenient to discuss the connections of our result

with the existing literature. The question posed earlier about the realization of

compact sets as attractors can be interpreted in different ways. In our approach

the ambient space is fixed (M = R3) but other authors have considered the

problem in different terms: the set K is a given compact metric space and

the unknowns are the ambient manifold M (of arbitrary dimension) and the

homeomorphism producing an attractor that is homeomorphic to K. The two

problems are different but certainly there are links between them. In particular

we refer to the approach taken by Günther in [9]. In this interesting paper the

very general case of continuous maps f : M → M is considered to show that

certain solenoids cannot be realized as attractors on any manifold M . To prove

this result Günther considers the Čech cohomology groups of an attractor K

and the induced homomorphism f∗ : Ȟ∗(K) → Ȟ∗(K), showing that there must

exist a finitely generated subgroup G ⊆ Ȟ∗(K) which acts as a sort of algebraic

attractor for h∗. This rather vague statement means exactly that

∞⋃
n=1

(f∗)−n(G) = Ȟ∗(K).

Our paper is organized as follows. In Section 2 we adapt the idea of Günther

to our setting, proving that it still holds after replacing the Čech cohomology

group of the attractor by the first homotopy group of its complement R3 − A.

Our construction of the wild torus T that cannot be an attractor is based on

two sets with very surprising topological properties: the Cantor set of Antoine

A and the wild sphere of Antoine A. These sets were discovered (invented?)

almost one century ago and they seem to be very well adapted for the needs of

dynamics. Section 3 reviews how A is constructed and some of its properties. In

Section 4 we introduce a number δ(α) that somehow quantifies the amount of

entanglement of a loop α ⊆ R3−A with the set A. Section 5 starts by reviewing
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how the Antoine sphere A is defined and then moves on to prove that the torus

T obtained by suitably attaching a handle onto A cannot be an attractor for

any homeomorphism.

We have also included an Appendix that establishes two well known proper-

ties of the Antoine set A for which, however, we could not find elementary proofs

in the literature.

2. A homotopical property of attractors

2.1. Let X be a path connected metric space with a basepoint x0 ∈ X , and

suppose h : X → X is a homeomorphism such that h(x0) = x0. Consider the

isomorphism h∗ : π1(X, x0) → π1(X, x0) induced by h on the fundamental group

of X .

Definition 2.1. We say that π1(X, x0) is finitely generated with respect to

h if there exists a finitely generated subgroup G ⊆ π1(X, x0) such that

π1(X, x0) =
⋃
k≥0

hk
∗(G).

Notice that when h = id we recover the notion that π1(X, x0) be finitely

generated.

2.2. Since Definition 2.1 is motivated by our desire to understand what sub-

sets of R3 can be attractors for homeomorphisms we now turn to dynamics,

first recalling some definitions and then establishing a relation with the property

described in Definition 2.1.

Let f : R3 → R3 be a homeomorphism. A compact set K ⊆ R3 is called

invariant if f(K) = K. A compact set P ⊆ R3 is said to be attracted by K

if for every neighbourhood V of K there exists n0 ∈ N such that fn(P ) ⊆ V

for every n ≥ n0. Finally, an attractor for f is a (nonempty) compact invariant

set K ⊆ R3 having a neighbourhood U such that every compact set P ⊆ U is

attracted by K. The biggest U with this property is called the basin of attraction

of K, and it is always an open and invariant subset of R3.

In the sequel it will be convenient to think of R3 as the 3-sphere S3 minus the

point at infinity ∞ and extend f to a homeomorphism of S3 simply by letting

∞ be fixed. Whenever we consider a homotopy group π1(X, x0) the basepoint

will be assumed to be x0 = ∞, even if not explicitly notated. Thus the elements

of π1(X) are homotopy classes [α] of loops α based at ∞.

Suppose K is an attractor for a homeomorphism f , and denote C∞ the

connected component of S3 −K containing ∞. Clearly f(C∞) = C∞, so f |C∞

is a homeomorphism of C∞. Then the following holds:

Proposition 2.2. π1(C∞) is finitely generated with respect to f |C∞.
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Before proving the proposition let us make the following observation. Let

B1 and B2 be two disjoint compact subsets of S3. Cover each point p ∈ B1

with a closed cube Cp centered at p and disjoint from B2. Since B1 is compact,

there is a finite subfamily of {Cp} whose union N is a neighbourhood of B1. By

construction N is compact and disjoint from B2. Also, it has a finite triangu-

lation and therefore each of its connected components has a finitely generated

fundamental group [20, Corollary 4, p. 141].

Proof. Let U be the region of attraction of f , which is an open subset

of S3. Then S3 − U and K are disjoint compact subsets of S3, so there exists

a neighbourhood N of S3 − U disjoint from K and such that the fundamental

group of each of its connected components is finitely generated. Let C′
∞ be

the connected component of N that contains ∞. Denoting i : C′
∞ → C∞ the

inclusion, the group G := i∗π1(C
′
∞,∞) is then finitely generated.

Let [α] ∈ π1(C∞,∞). Observe that the image of α is a compact subset of

S3 −K, and notice also that P := S3 −N is a compact subset of U . Since K is

an attractor there exists k ≥ 0 such that the image of α is disjoint from fk(P ),

and consequently also from fk(S3 −N) = S3 − fk(N). Thus im α ⊆ fk(N) and

letting β := f−k ◦ α we see that im β ⊆ N . Now im β is a connected subset of

N which contains ∞, so it is actually contained in C′
∞. Thus [β] ∈ G and so

[α] = fk
∗ ([β]) ∈ fk

∗ (G).

In the dynamical situation considered in Proposition 2.2 it is definitely not

true in general that π1(C∞,∞) is finitely generated. To clarify this it is illustra-

tive to consider a well known example: the dyadic solenoid.

Example 2.3. Let T ⊆ R3 be a solid torus of revolution and f : R3 → R3

a homeomorphism such that f(T ) ⊆ intT winds twice around T . The set K :=⋂
k≥0

fk(T ) is the dyadic solenoid, and by its very construction it is an attractor

for f .

For each k = 0, 1, . . . denote Xk the complement of the torus Tk := fk(T )

in S3. The Xk form an increasing sequence of open sets whose union is X :=

S3 −K. Thus π1(X) is the direct limit of the sequence

S : π1(X0) −→ π1(X1) −→ π1(X2) −→ · · ·

where the arrows denote the inclusion induced homomorphisms. Since each Tk

is an unknotted torus, π1(Xk) = Z for every k.

Now consider, for instance, the first arrow in this sequence. Figure 1 shows

the torus T cut along a meridian disk (thus it looks like a solid cylinder) and

T1 inside it. Clearly π1(X0) is generated by g0 and π1(X1) is generated by g1.

Moreover, g0 = 2g1 in π1(X1). The same argument shows that π1(Xk) is gen-

erated by a loop gk such that gk = 2gk+1 in π1(Xk+1). Hence the sequence S
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simply reads

S : Z
·2−→ Z

·2−→ Z
·2−→ · · ·

The direct limit of this sequence is easily seen to be non-finitely generated.

However, clearly f∗ takes gk onto gk+1. Thus, letting G be the subgroup of

π1(X) generated by g0, evidently π1(X) =
⋃
k≥0

fk
∗ (G), showing that π1(X) is

finitely generated with respect to f .

g0

g1

T

T1

Figure 1. The dyadic solenoid.

Observe that Proposition 2.2 holds true for attractors in any Rn.

3. The Cantor set of Antoine

Antoine [1, §78, p. 311 ff.] gave an example of a Cantor set A ⊆ R3 that

is not ambient homeomorphic to the standard Cantor set in R3. His example,

which we shall call the Antoine necklace, has many paradoxical properties. Since

our construction of the torus T that cannot be an attractor is based on the set

A we now review in some detail how it is defined and enumerate some of its

properties. Moise [14] dedicates a whole chapter to this set.

3.1. Consider an unknotted solid torus T0 ⊆ R3. Inside T0 place a chain

comprised of N ≥ 4 smaller solid tori linked as shown in Figure 2 for N = 5. Let

them be labeled T11, . . . , T1N and denote M1 = T11 ∪ . . . ∪ T1N be their union.

These T1j are the first generation tori of the process.

Now repeat the same construction at a smaller scale, placing inside each first

generation torus T1j a chain of N tori linked again in the pattern of Figure 2.

These are the second generation tori T2j and there are N2 of them. We denote

their union M2. This process is then repeated inductively, so for each generation

i we construct a family of N i tori labeled Tij . The set Mi is the union of all



1094 R. Ortega — J.J. Sánchez-Gabites

T0T11

T12

T13T14

T15

Figure 2.

the tori belonging to generation i and the Antoine necklace is defined as the

intersection

A =

∞⋂
i=1

Mi.

Let us introduce some useful terminology. If Tij is any of the solid tori which

constitute the chain Mi, we call the intersection Aij := Tij ∩ A a link of A

of generation i. Evidently a link Aij is the (disjoint) union of the N links of

generation i + 1 that it contains, and A is the union of all the ith generation

links for any given i. If h : R3 → R3 is a homeomorphism such that h(A) = A,

we say that h is generation preserving if for each link Aij there exists another

link Aij′ of the same generation such that h(Aij) = Aij′ .

3.2. We now enumerate some properties of the Antoine necklace that will

play an important role in the sequel. The first one is an easy consequence of the

symmetry of the construction of A:

(A1) Given any two Aij and Aij′ belonging to the same generation, there

exists an ambient homeomorphism g : R3 → R3 such that g(A) = A, g is

generation preserving, and g(Aij) = Aij′ .

Now follow two truly paradoxical properties. The first one was already es-

tablished by Antoine [1, §86, p. 318] and a modern proof can be found in the

book by Moise [14, Theorem 3, p. 131]. The second one seems to be also well

known but we are not aware of any elementary proofs. Thus we have supplied

one in an Appendix (Lemma A.1).

(A2) Let µi be a meridian of one of the tori Tij . Then µi is not contractible

in S3 −Aij .

(A3) Let µ0 be a meridian of T0. Choose a point p ∈ A and denote A∗ :=

A − {p} the result of removing p from A. Then µ0 is contractible in

T0 −A∗, even though it is not contractible in T0 −A.

The next property is easy to prove:
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(A4) Let α be a loop in S3 − A. Then there exists a generation i0 such that

for every i > i0, α is nullhomotopic in S3 −Aij (for every j).

Proof. Since α∩A = ∅, there exists Mi0 such that A∩Mi0 = ∅. Let Tij be

any component of Mi with i > i0. By the construction of the Mi, there is a ball

B ⊆ Mi0 such that Tij ⊆ B, so α ⊆ S3 − B ⊆ S3 − Tij ⊆ S3 − Aij . But S
3 − B

is simply connected, so α is contractible in S3 −Aij . �

One final property will play an important role in the sequel. It seems intu-

itively reasonable and has been established, in different guises, by many authors

such as Sher [19] or Wright [21]. Again, the interested reader can find an ele-

mentary proof in the Appendix (Lemma A.5).

(A5) Let h : R3 → R3 be a homeomorphism such that h(A) = A. Then h is

generation preserving.

4. The depth of a loop

Let α be a loop in S3−A, based at ∞ as always. If α is contractible in S3−A

let δ(α) = −1; otherwise define δ(α) as the largest i = 0, 1, 2, . . . such that the

following property holds: there exists a generation i link Aij such that α is not

nullhomotopic in S3 −Aij . This is well defined by property (A4) of the Antoine

necklace.

As an example, consider a meridian µi of any of the tori Tij . Property (A2)

of the Antoine necklace guarantees that δ(µi) ≥ i. It is very easy to see that µi

is contractible in any S3 − Tk�, where k > i. Therefore it is also contractible in

S3 −Ak�, and it follows that δ(µi) = i.

Although δ has been defined for loops in S3 − A, it is actually well defined

for homotopy classes of loops in S3−A; that is, for elements of π1(S
3−A). This

is the content of the following proposition:

Proposition 4.1. If two loops α and β are homotopic in S3 − A, then

δ(α) = δ(β).

Proof. By symmetry it suffices to prove δ(α) ≤ δ(β). Denote i0 = δ(β), so

that β is contractible in S3 −Aij whenever i > i0. Since α and β are homotopic

in S3 −A, they are also homotopic in S3 −Aij and therefore α is contractible in

S3 −Aij too. Thus δ(α) ≤ i0 = δ(β). �

The following two propositions describe relevant properties of δ. The first is

concerned with its behaviour under inversion and concatenation of loops. The

second one proves that δ is invariant under an ambient homeomorphism fixing

the Antoine necklace.

Proposition 4.2. For any loops α, β in S3 −A,
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(a) the equality δ(α−1) = δ(α) holds,

(b) the inequality δ(α ∗ β) ≤ max{δ(α), δ(β)} holds.

Proof. Part (a) is trivial, since the definition of δ(α) is insensitive to the

orientation of α. Part (b) is also easy. Assume for definiteness that δ(α) ≥ δ(β)

and set i0 = δ(α). Then, by the definition of δ, both α and β are nullhomotopic

in S3 − Aij for every i > i0. Thus the same holds true for α ∗ β, which implies

that δ(α ∗ β) ≤ i0 = max{δ(α), δ(β)}. �

Proposition 4.3. Let h : R3 → R3 be a homeomorphism that leaves A in-

variant. For any loop α in S3 −A, the equality δ(h ◦ α) = δ(α) holds.

Proof. Clearly h◦α is a loop in S3−A, so it makes sense to consider δ(h◦α).
Consider any Aij . By property (A5) of the Antoine necklace, h(Aij) = Aij′ for

some j′. Thus h restricts to a homeomorphism of S3 − Aij onto S3 − Aij′ , and

so α is contractible in S3 − Aij if and only if h ◦ α is contractible in S3 − Aij′ .

This readily implies that δ(h ◦ α) ≤ δ(α). The same argument applied to the

loop β := h ◦α and the homeomorphism h−1 shows that δ(h−1 ◦β) ≤ δ(β); that

is, δ(α) ≤ δ(h ◦ α). This finishes the proof. �

5. A torus T ⊆ R3 that cannot be an attractor

We are finally ready to show how to construct a torus T , or more generally

surfaces of any prescribed genus, that cannot be attractors. Our starting point

is the wild sphere of Antoine A, which he first introduced in 1921 [2]. It is a 2-

sphere embedded in R3 in such a way that it contains A, the Antoine necklace

constructed in Section 3. A modern exposition of his construction can be found

in the book by Rolfsen [15, pp. 73 ff.], but we also include a description here.

We use the notation ∂M and Ṁ for the boundary and interior of a compact

manifold with boundary M ⊆ R3 (these do not necessarily coincide with the

frontier and interior of M as a subset of R3).

5.1. The construction of the Antoine sphere A builds on that of the Antoine

set A. Recall that the first step in defining A was to take a solid torus T0 and

place inside it a chain of linked tori T11, . . . , T1N .

Step 0. Choose a disk D0 ⊆ ∂T0 and disks D1j ⊆ ∂T1j. Draw a surface

Σ0 connecting the curve ∂D0 to the ∂D1j as shown in grey in Figure 3 (only

D12 and D14 have been labeled to avoid cluttering). More specifically, Σ0 is

a sphere with N + 1 holes whose boundary ∂Σ0 consists precisely of the curves

∂D0 ∪ ∂D11 ∪ . . . ∪ ∂D1N and whose interior Σ̇0 is contained in the interior of

T0 −
⋃
T1j .
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T11 T12 T13 T14 T15

Σ0

D12 D14D0

Figure 3. Constructing the sphere of Antoine.

Step 1. Now repeat the same construction inside each first generation torus

T1j. For instance, suppose that the second generation tori contained in T11 are la-

beled T21, . . . , T2N . Choose disksD21, . . . , D2N on the boundaries of T21, . . . , T2N

and then find a sphere with holes Σ11 connecting ∂D11 to the curves ∂D21, . . . ,

∂D2N . As in the previous step, Σ̇11 should be contained in the interior of

T11 −
N⋃
j=1

T2j . After doing this in each T1j a total of N spheres with holes

Σ11, . . . ,Σ1N will have been constructed, each Σ1j contained in its T1j.

Repeating this construction inductively it is easily seen that A := D0 ∪Σ0 ∪⋃
i,j

Σij ∪ A is homeomorphic to a 2-sphere. We call this the sphere of Antoine.

5.2. Let S ⊆ R3 be a closed surface and consider a point p ∈ S. We say

that S is locally tame at p if there exist an open neighbourhood U of p in R3

and a homeomorphism ϕ : R3 → R3 such that ϕ(U ∩S) is contained in the z = 0

plane. Notice that then S is locally tame at every point in U . For the sake of

brevity we shall say that p is a tame point of S if S is locally tame at p, and

a wild point of S otherwise.

If p is a tame point of S then, with the notation of the previous paragraph,

every point in U is also tame. Thus the set of tame points is open in S. Also,

notice that an ambient homeomorphism h : R3 → R3 carries tame points of S

onto tame points of h(S); that is, it preserves the tame or wild character of

points.

A deep theorem due independently to Bing [3, Theorem 6, p. 152] and Moise

[14, Theorem 4, p. 254] states the following: if every point in S is tame, then there

exists a homeomorphism ϕ : R3 → R3 such that ϕ(S) is a polyhedral surface. In

the particular case where S is a sphere, so that ϕ(S) is a polyhedral sphere, it is

a consequence of the polyhedral Schönflies theorem [14, pp. 117 ff.] that each of
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the two components of S3−ϕ(S) is simply connected. It follows that the same is

true of S3−S, because it is homeomorphic to S3−ϕ(S) via ϕ. Thus a sphere with

no wild points separates S3, and also R3, into two simply connected domains.

Let us consider the particular case of the Antoine sphere A. Notice that

the unbounded component of the complement of A is not simply connected

(for instance, the meridian µ0 is not contractible there because it is not even

contractible in the bigger set S3 −A by property (A1) of the Antoine necklace).

It follows from the previous paragraph that there exists at least a wild point

in A. It is clear that every point in A − A is tame by construction, so we see

that there is a wild point in A. We can refine this argument to show that every

point in A is a wild point of A.

Proposition 5.1. The set of wild points of A is precisely A.

Proof. Suppose A were locally tame at some p ∈ A. Then p would have

an open neighbourhood U in A such that every point in U is also tame. Pick

a generation i big enough so that some Aij is contained in U and consider the

portion of the sphere that is contained in Tij ; that is, the intersection A∩Tij . By

the self similar nature of the construction ofA, it is clear thatA′ := (A∩Tij)∪Dij

is ambient homeomorphic to A. Now, the only wild points in A′ could be those

belonging to the Antoine necklace, so they must all be contained in A′∩A = Aij .

But every point in Aij ⊆ U is tame in A and consequently also in A′, so it follows

that every point of A′ is tame. Since A is ambient homeomorphic to A′, every

point in A should also be tame. �

5.3. Now it is easy to construct the torus T that cannot be an attractor:

just take the Antoine sphere A, drill two holes in the interior of the disk D0, and

connect them with a small, hollow polyhedral tube. The tube should intersect T0

just at its ends. This yields a 2-torus T whose set of wild points is precisely A.

Theorem 5.2. T is not an attractor for a homeomorphism f of R3.

Proof. We reason by contradiction. Suppose T is an attractor for a home-

omorphism f , and let C∞ be the connected component of S3 −T containing ∞.

By Proposition 2.2 there exists a finitely generated group G ⊆ π1(C∞) such that

π1(C∞) =
⋃
k≥0

fk
∗ (G).

Any element g ∈ G is represented by a loop α in C∞ which is determined only

up to homotopy in C∞. This set is contained in S3−A and so by Proposition 4.1

the depth δ(α) is independent of the particular representative α of the element

g, so we can write δ(g) := δ(α).

Let g1, . . . , gn be generators for G and set ∆ := max{δ(gi) : 1 ≤ i ≤ n}. Any
element g ∈ G can be written as a product of the gi or their inverses g−1

i . An

inductive application of Proposition 4.2 then implies that δ(g) ≤ ∆. Since f is
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an ambient homeomorphism it must leave the set of wild points of T invariant,

which is precisely A by Proposition 5.1 (and the construction of T ). Thus by

Proposition 4.3 we see that δ(fk
∗ (g)) = δ(g) ≤ ∆ for every g ∈ G and k ≥ 0.

Since G was assumed to satisfy
⋃
k≥0

fk
∗ (G) = π1(C∞), it follows that δ(�) ≤ ∆

for every � ∈ π1(C∞).

The construction of T is such that, given any torus Tij , it is possible to find

a meridian µi of Tij contained in C∞. As mentioned earlier, these meridians

satisfy δ(µi) = i for every i = 1, 2, . . . but this contradicts the inequality δ(�) ≤ ∆

obtained in the previous paragraph. �

The argument of Theorem 5.2 works equally well to show that the Antoine

sphere A itself cannot be an attractor either, and in fact the construction of T
can be easily generalized to obtain surfaces of any prescribed genus that cannot

be attractors.

Appendix A

The material in this appendix is well known and has even been established

in much more general contexts [19], [21]. However, as an aid to the interested

reader we have thought it convenient to provide proofs tailored to our specific

situation. In particular, our goal is to establish properties (A3) and (A5) of the

Antoine necklace.

A.1. Consider a meridian µ0 of the torus T0. Although µ0 is not contractible

in R3 −A, property (A3) says that µ0 is contractible not only in R3 but even in

T0 as soon as a single point is removed from A. More formally, we have:

Lemma A.1. Let µ0 be a meridian of T0. Choose a point p ∈ A and denote

A∗ := A− {p}. Then µ0 is contractible in T0 −A∗.

Proof. We need to define a continuous map F : D2 → T0 − A∗ such that

F |∂D2 = µ0, where D2 ⊆ R2 stands for the closed unit 2-disk. Let us remark

that F does not need to be injective.

For each generation i = 1, 2, . . . let Tiji be the ith generation torus containing

p, so that T0 ⊇ T1j1 ⊇ T2j2 ⊇ . . . and the collection {Tiji} is a neighbourhood

basis of p.

Step 1. Slide µ0 along ∂T0 to a position µ′
0 where the meridional disk D′

0

that it spans meets T1j1 in precisely two meridional disks D11 and D12 and is

disjoint from every other first generation torus T1j .

Notice that µ0 and µ′
0 cobound an annulus in ∂T0 and µ′

0 bounds a disk with

two holes, namely D′
0 − int (D11 ∪D12). Referring to Figure 4, we then define

the map F on D2 minus the interior of two disks E11 and E12 in such a way

that it takes the outermost, light gray annulus onto the annulus bounded by µ0
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and µ′
0 in ∂T0 and the slightly darker disk with two holes onto the disk with two

holes D′
0 − int (D11 ∪D12).

µ0

µ′
0

D′
0

µ11

µ12

F

D2

E11 E12

T1j1

Figure 4.

Step 2. Notice that the curves µ11 = ∂D11 and µ12 = ∂D12 are meridians of

T1j1 . In this second step we perform with each of them the same operation that

we did earlier with µ0. Thus we slide µ11 and µ12 along ∂T1j1 to positions µ′
11

and µ′
12 where the meridional disks they span (D′

11 and D′
12, say) are disjoint

from all the second generation tori T2j except for T2j2 and D′
11 and D′

12 intersect

T2j2 in two meridional disks each.

As in the previous step, µ11 and µ′
11 cobound an annulus in ∂T1j1 and µ′

11

bounds a disk with two holes (shown in very dark gray in the right hand side of

Figure 5). Thus the map F can be extended to the disk E11 minus the interior

of two smaller disks E21 and E22. The same goes for µ12 and µ′
12, and exactly

in the similar fashion F can also be extended to the disk E12 minus the interior

of two smaller disks E23 and E24.

Continuing in this fashion F can be extended to a continuous map defined

on D2 minus a Cantor set C which is the intersection of the decreasing sequence

of sets

(E11 ∪E12) ⊇ (E21 ∪ E22 ∪ E23 ∪ E24) ⊇ . . .

Notice that F is defined in such a way that F (Eik − C) ⊆ Tiji and, since

the Tiji are a neighbourhood basis of p, this implies that F can be extended

continuously to all D2 simply letting F |C ≡ p. It is then clear by construction

that F (D2) ∩ A = {p}, so that F (D2) ⊆ T0 −A∗, as required. �
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µ11

µ12

µ′
11

µ′
12

F

D2

E11 E12

E2j

Figure 5.

Before moving ahead it is convenient to discuss to what extent the map F

described in the proof of Lemma A.1 can be chosen to be injective. Evidently

we are always going to have F |C ≡ p, so the best we can hope for is to have F

injective on D2 −C. This requires that the geometric objects that appear in the

definition of F be disjoint, as we now explain.

Consider, for instance, the situation just after Step 2. We have four meridians

µ2k on the boundary of T2j2 . They are shown as radial lines in Figure 6(a), which

is a very schematic representation of the torus T2j2 seen from above. We want to

slide the µ2k clockwise to suitable new positions µ′
2k and will do so in order: we

start with µ23, which is the one closest to T3j3 , then continue with µ22 stopping

at some µ′
22 just short of reaching µ′

23, and so on until we finish with µ24. As

suggested in Figure 6(a) the meridians µ′
2k are chosen to be very close to each

other and, of course, with the property that the meridional disks D′
2k they span

meet T3j3 exactly in two meridional disks each.

If at this stage we define F as in the proof of Lemma A.1 it will not be

injective because the annuli traced by sliding each µ2k onto µ′
2k are not disjoint.

However, it is easy to fix this by modifying slightly the construction. Nothing

has to be changed regarding µ23. However, instead of sliding µ22 along ∂T2j2

we first shrink it slightly so it lies just beneath ∂T2j2 and then slide it parallel

to ∂T2j2 but still inside it. Its final position is then a slightly shrinked meridian

of T2j2 . The situation is depicted in Figure 6(b). Notice that now the annulus

traced by the sliding of µ22 is disjoint from the annulus cobounded by µ23 and
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µ′
23 as desired. The same can be done with µ21 by shrinking it a bit more than

µ22 and, finally, the same goes for µ24 which should be shrunk even further.

T2j2

µ24

µ21

µ22

µ23

T3j3

µ′
23
...

µ′
24

(a) (b)

Figure 6.

It should be clear that, if the same precaution is taken at each step of the

construction of F , the resulting map F will be injective on D2 − C.

A.2. Intuition suggests that two consecutive Aij and Aij′ of the same gen-

eration are, somehow, linked. This can be given a precise definition and it is, in

fact, one of the key facts underlying property (A5) of the Antoine necklace.

Let us begin with a standard definition. Recall that a 2-sphere S ⊆ R3

separates R3 in two connected components; one bounded and one unbounded.

We denote them by Int S and Ext S respectively. Now, two disjoint solid tori

T, T ′ ⊆ R3 ⊆ S3 are unlinked if there exists a 2-sphere S such that T ⊆ Int S

and T ′ ⊆ Ext S or viceversa; otherwise they are linked. In the former case it

is always possible to choose S to be a polyhedral sphere by an approximation

theorem of Bing [4, Theorem 1, p. 457]. Then the polyhedral Schönflies theorem

guarantees that each connected component of S3 − S is simply connected and

it follows that T is contractible in R3 − T ′ (and viceversa). Thus for instance

every pair of adjacent tori in any of the chains Mi used to construct the Antoine

necklace A are linked.

The definition translates inmediately to Cantor sets: two disjoint Cantor

sets C1 and C2 are unlinked if there exists a 2-sphere S such that C1 and C2

are contained in different components of S3 − S; they are linked if they are not

unlinked.

Lemma A.2. Let C � A be a compact set. There exists a 2-sphere S ⊆ T0

such that C is contained in Int S.
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Proof. Let µ0 be a meridian of T0. First we are going to show that µ0

bounds a meridional disk D0 disjoint from C. More precisely, there exists an

embedding F : D2 → T0 − C such that F |∂D2 = µ0; the meridional disk D0 is

then F (D2).

Pick a point p ∈ A− C and let, as in the proof of Lemma A.1, T0 ⊇ T1j1 ⊇
T2j2 ⊇ . . . be the sequence of tori containing p. Since C is closed and {Tiji}
is a neighbourhood basis of p there exists i0 such that C ∩ Tiji = ∅ for every

i ≥ i0. Perform the construction of Lemma A.1 up to stage i0 with the required

precautions, described above, to render F injective. At that stage there exists

a family of disjoint disks Ei01, . . . , Ei02i0 contained in the interior of D2 and F

is an embedding of D2 − int(Ei01 ∪ . . . ∪ Ei02i0 ) into T0 − A. Now observe that

the restrictions F |∂Ei0k
are, by construction, meridians of Ti0ji0

. Each of them

spans a meridional disk Di0k contained in Ti0ji0
and therefore disjoint from C.

Thus we can extend F to an embedding of all D2 into T0 −C just letting it take

each Ei0k homeomorphically onto Di0k.

The meridional diskD0 is a piecewise smooth surface, so it can be “thickened”

within T0. Formally this means that F can be extended to an embedding F̂ : D2×
[−1, 1] → T0 − C such that F̂ |D2×{0} = F and F̂ takes (∂D2) × [−1, 1] onto an

annulus V ⊆ ∂T0 whose middle circumference is µ0. Let D+ = F (D2 ×{1}) and
D− = F (D2 × {−1}). These are again meridional disks, mutually disjoint and

parallel to D. The union of the annulus (∂T0) − V and the two disks D+ and

D− is a 2-sphere S contained in T0.

The intersection of intT0 and the sphere S consists only of the interiors of

the meridional disks D+ and D−. Thus S separates int T0 in two connected

components, one of which contains C. As a consequence C is wholly contained

in one of the components of R3 − S. �

Lemma A.3. Let C ⊆ A1j and C′ ⊆ A1j′ be Cantor sets. Then C and C′

are linked if, and only if, the following two conditions hold:

(a) C = A1j and C′ = A1j′ ,

(b) T1j and T1j′ are linked.

Proof. Let us begin with (⇐). Suppose that the Cantor sets C = A1j

and C′ = A1j′ were not linked. Then there would exist a polyhedral sphere S

such that C ⊆ Int S and C′ ⊆ Ext S (or viceversa). An argument of Antoine

[1, §84, p. 317] shows that S could be chosen in such a way as to separate also

the tori T1j and T1j′ . However this is impossible, because the tori are linked by

hypothesis. Therefore A1j and A1j′ must be linked too.

Let us prove (⇒) by contradiction. If T1j and T1j′ are unlinked then the

same is trivially true of A1j and A1j′ . Hence it suffices to prove the following:

if C � A1j then C and C′ are unlinked. By Lemma A.2 applied to the Antoine

necklace A1j inside the torus T1j there exists a 2-sphere S ⊆ T1j such that C
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is contained in Int S, the bounded component of R3 − S. Since T1j′ is disjoint

from T1j (and hence from S), it is contained in the component of R3 − S that

contains the unbounded set R3 − T1j . Thus T1j′ , and consequently also C′ is

contained in Ext S. Therefore C and C′ are unlinked. �

Lemma A.4. Let A be an Antoine necklace and h : R3 → R3 a homeomor-

phism such that h(A) = A. Then for each A1j there exists A1j′ such that

h(A1j) = A1j′ . That is, h takes links of generation i = 1 onto links of the

same generation.

Proof. Since h−1(M1) is a neighbourhood of A, there exists an integer

i ≥ 0 such that Mi ⊆ h−1(M1). Thus for each connected component Tij of

Mi there exists a connected component T1j′ of M1 such that h(Tij) ⊆ T1j′ . As

a consequence h takes each Aij into some A1j′ . Let m ≥ 1 be the smallest integer

with this property, so that:

(i) for each mth generation link Amj there exists a first generation link

A1σ(j) such that h(Amj) ⊆ A1σ(j),

(ii) there exists an (m − 1)th generation link, which me may assume to be

A(m−1)1, such that h(A(m−1)1) is not contained in any first generation

link of A.

Denote Am1, Am2, . . . , AmN the mth generation links contained in A(m−1)1,

labeled in such a way that Amj is adjacent (and therefore linked, by Lemma A.3)

to Am(j−1) and Am(j+1). Departing from our earlier conventions it will be conve-

nient to use a cyclic notation for j, so that Am(N+1) means Am1, Am(N+2) means

Am2 and so on. By (i) each one of h(Am1), h(Am2), . . . , h(AmN ) is contained in

some first generation link of A, but if all of them were contained in the same

link, then h(A(m−1)1) would also be contained there, contradicting (ii). Thus

there exists 1 ≤ j0 ≤ N such σ(j0) �= σ(j0 + 1). The Antoine necklaces Amj0

and Am(j0+1) are linked, so their images under h are also linked and therefore

by Lemma A.3 we must have h(Amj0) = A1σ(j0), h(Am(j0+1)) = A1σ(j0+1) and

|σ(j0 + 1)− σ(j0)| = 1. Assume for definiteness that σ(j0 + 1) = σ(j0) + 1.

Consider h(Am(j0+2)). Since Am(j0+2) is linked with Am(j0+1), the same is

true of h(Am(j0+2)) and h(Am(j0+1)) = A1σ(j0+1). Thus again by Lemma A.3

either h(Am(j0+2)) = A1σ(j0) or h(Am(j0+2)) = A1(σ(j0)+2). The first case is

impossible because h is injective and A1σ(j0) = h(Amj0 ), so the second must

hold. Proceeding in the same way it follows that σ(j) = σ(j0) + (j − j0), so in

particular σ is surjective, and h(Amj) = A1σ(j) for every 1 ≤ j ≤ N . Therefore,

since A(m−1)1 = Am1 ∪ . . . ∪ AmN it follows that

h(A(m−1)1) =

N⋃
j=1

h(Amj) =

N⋃
j=1

A1σ(j) = A,
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where in the last equality we have used that σ is surjective. Since h is injective,

this means that A(m−1)1 must be all of A, so m = 1. This proves the proposition.

Lemma A.5. Let A be an Antoine necklace and h : R3 → R3 a homeo-

morphism such that h(A) = A. Then for each Aij there exists Aij′ such that

h(Aij) = Aij′ . That is, h preserves generations.

Proof. The argument is by induction on i. The case i = 1 is settled by

Lemma A.4. We now give the inductive step from i to i+ 1.

Pick any A(i+1)j and denote Aik the previous generation link which contains

A(i+1)j . By the induction hypothesis there exists k′ such that h(Aik) = Aik′ . Ac-

cording to property (A1) of the Antoine necklace there exists a homeomorphism

g of R3 such that g(A) = A, g is generation preserving, and g(Aik′ ) = Aik. The

composition gh is a homeomorphism of R3 which leaves the Antoine necklace

Aik invariant. Applying Lemma A.4 to gh|Aik
, we see that each first generation

link of Aik is taken by gh onto a first generation link of Aik. But A(i+1)j is a first

generation link of Aik, so there exists A(i+1)j′′ such that gh(A(i+1)j) = A(i+1)j′′ .

Therefore h(A(i+1)j) = g−1(A(i+1)j′′ ) = A(i+1)j′ , where the last equality follows

from the property that g is generation preserving.
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