Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Semantics and Completeness for Schematic Logic
  • Home
  • /
  • Semantics and Completeness for Schematic Logic
  1. Home /
  2. Archives /
  3. Vol. 30 No. 2 (2021): June /
  4. Articles

Semantics and Completeness for Schematic Logic

Authors

  • Oliver William Tatton-Brown Department of Philosophy, University of Bristol https://orcid.org/0000-0001-8439-8068

DOI:

https://doi.org/10.12775/LLP.2020.021

Keywords

logic, nominalist, schematic logic, semantics, completeness

Abstract

This paper gives a semantics for schematic logic, proving soundness and completeness. The argument for soundness is carried out in ontologically innocent fashion, relying only on the existence of formulae which are actually written down in the course of a derivation in the logic. This makes the logic available to a nominalist, even a nominalist who does not wish to rely on modal notions, and who accepts the possibility that the universe may in fact be finite.

References

Boolos, George, 1971, “The iterative conception of set”, The Journal of Philosophy 68 (8): 215–231. URL http://www.jstor.org/stable/2025204. DOI: http://dx.doi.org/10.2307/2025204

Burgess, John P., and Gideon Rosen, 1997, A Subject With No Object: Strategies for Nominalistic Interpretation of Mathematics, Oxford University Press: Oxford, New York.

Cori, René, and Daniel Lascar, 2001, Mathematical Logic: A Course with Exercises Part II, OUP Oxford: Oxford.

Feferman, Solomon, 1991, “Reflecting on incompleteness”, The Journal of Symbolic Logic 56 (1): 1–49. URL http://www.jstor.org/stable/2274902. DOI: http://dx.doi.org/10.2307/2274902

Field, Hartry, 1980, Science Without Numbers, Princeton University Press: Princeton, N.J.

Heck, Richard Kimberly, 2011, Frege’s Theorem, OUP Oxford: Oxford, New York. (Originally published under the name “Richard G. Heck, Jr”.)

Lavine, Shaughan, 1998, Understanding the Infinite, new edition, Harvard University Press: Cambridge, Mass.

Maddy, Penelope, 1997, Naturalism in Mathematics, Clarendon Press.

McGee, Vann, 1997, “How we learn mathematical language”, The Philosophical Review 106 (1): 35–68. URL http://www.jstor.org/stable/2998341. DOI: http://dx.doi.org/10.2307/2998341

Parsons, Charles, 2007, Mathematical Thought and its Objects, Cambridge University Press.

Quine, W.V., 1999, “Reply to Charles Parsons”, in pages 396–403 Lewis Edwin Hahn and Paul Arthur Schilpp (eds.), The Philosophy of W.V. Quine, Volume 18, Open Court Publishing Co: La Salle, Ill.

Shapiro, Stewart, 2000, Foundations without Foundationalism: A Case for Second-order Logic, new edition, Oxford University Press: Oxford, USA.

Shoenfield, J., 1982, “Axioms of set theory”, in Handbook of Mathematical Logic, North Holland: Amsterdam, New York.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2020-11-03

How to Cite

1.
TATTON-BROWN, Oliver William. Semantics and Completeness for Schematic Logic. Logic and Logical Philosophy. Online. 3 November 2020. Vol. 30, no. 2, pp. 227-280. [Accessed 7 July 2025]. DOI 10.12775/LLP.2020.021.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 30 No. 2 (2021): June

Section

Articles

Stats

Number of views and downloads: 755
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

logic, nominalist, schematic logic, semantics, completeness
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop