Sorites, Curry and Suitable Models

Bruno Da Ré, Paula Teijeiro



In this paper we present two new approaches for dealing with semantic paradoxes and soritical predicates based on fuzzy logic. We show that both of them have conceptual advantages over the more traditional Łukasiewicz approach, and that the second one even avoids standard proofs of ω-nconsistency.


paradoxes; vagueness; truth; ω-inconsistency; Łukasiewicz logic

Full Text:



Bacon, A., “Curry’s paradox and ω-inconsistency”, Studia Logica 101, 1 (2013): 1–9. DOI:

Barrio, E., “Theories of truth without standard models and Yablo’s sequences”, Studia Logica 96, 3 (2010): 375–391. DOI:

Barrio, E., and L. Picollo, “Notes on ω-inconsistent theories of truth in second-order languages”, The Review of Symbolic Logic 6, 4 (2013): 733–741. DOI:

Barrio, E., and B. Da Ré, “Truth without standard models: Some conceptual problems reloaded”, Journal of Applied Non-Classical Logics 28, 1 (2018): 122–139. DOI:

Cobreros, P., P. Egré, D. Ripley and R. van Rooij, “Vagueness, truth and permissive consequence”, pages 1–24 in T. Achourioti et. al. (eds.), Unifying the Philosophy of Truth, Springer, 2014. DOI:

Cook, R., “What is a truth value and how many are there?”, Studia Logica 92, 2 (2009): 183. DOI:

Cornelis, C., G. Deschrijver and E. Kerre, “Advances and challenges in interval-valued fuzzy logic”, Fuzzy Sets and Systems 157, 5 (2006): 622–627. DOI:

Edgington, D., “Vagueness by degrees”, pages 294–316 in R. Keefe and P. Smith (eds.), Vagueness by Degrees, MIT Press, 1997.

Field, H., Saving Truth from Paradox, Oxford University Press, New York, 2008. DOI:

Goguen, J., “The logic of inexact concepts”, Synthese 19, 3–4 (1969): 25–373. DOI:

Gupta, A., “In praise of a logic of definitions that tolerates ω-inconsistency”, Philosophical Issues 28, 1 (2018): 176–195.

Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, volume 4, Springer Science & Business Media, 2013. DOI:

Hájek, P., J. Paris and J. Shepherdson, “The liar paradox and fuzzy logic”, The Journal of Symbolic Logic 65, 1 (2000): 339–346. DOI:

Halbach, V., Axiomatic Theories of Truth, Cambridge University Press, 2011. DOI:

Keefe, R., Theories of Vagueness, Cambridge University Press, 2000.

Kripke, S., “Outline of a theory of truth”, Journal of Philosophy 72, 19 (1975): 690–716. DOI:

Pailos, F., and L. Rosenblatt, “Non-deterministic conditionals and transparent truth”, Studia Logica 103, 3 (2015): 579–598. DOI:

Priest, G., “The logic of paradox”, Journal of Philosophical Logic 8, 1 (1979): 219–241. DOI:

Priest, G., Beyond the Limits of Thought, Oxford University Press, 2002. DOI:

Priest, G., “What if? the exploration of an idea”, The Australasian Journal of Logic 14, 1 (2017). DOI:

Priest, G., et al., “Inclosures, vagueness, and self-reference”, Notre Dame Journal of Formal Logic 51, 1 (2010): 69–84. DOI:

Restall, G., “Arithmetic and truth in Łukasiewicz logic”, Logique et Analyse 140 (1992): 303–312.

Restall, G., “On logics without contraction”, PhD Thesis, University of Queensland, 1993.

Wright, C., “On the coherence of vague predicates”, Synthese 30, 3 (1975): 325–365. DOI:

Yatabe, S., “Yablo-like paradoxes and co-induction”, pages 90–103 in New Frontiers in Artificial Intelligence, Springer, 2011. DOI:

ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism