Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Sorites, Curry and Suitable Models
  • Home
  • /
  • Sorites, Curry and Suitable Models
  1. Home /
  2. Archives /
  3. Vol. 29 No. 4 (2020): December /
  4. Articles

Sorites, Curry and Suitable Models

Authors

  • Bruno Da Ré Department of Philosophy, University of Buenos Aires and IIF-SADAF, National Scientific and Technical Research Council (CONICET)
  • Paula Teijeiro Department of Philosophy, University of Buenos Aires and IIF-SADAF, National Scientific and Technical Research Council (CONICET)

DOI:

https://doi.org/10.12775/LLP.2020.006

Keywords

paradoxes, vagueness, truth, ω-inconsistency, Łukasiewicz logic

Abstract

In this paper we present two new approaches for dealing with semantic paradoxes and soritical predicates based on fuzzy logic. We show that both of them have conceptual advantages over the more traditional Łukasiewicz approach, and that the second one even avoids standard proofs of ω-nconsistency.

References

Bacon, A., “Curry’s paradox and ω-inconsistency”, Studia Logica 101, 1 (2013): 1–9. DOI: https://doi.org/10.1007/s11225-012-9373-3

Barrio, E., “Theories of truth without standard models and Yablo’s sequences”, Studia Logica 96, 3 (2010): 375–391. DOI: http://dx.doi.org/10.1007/s11225-010-9289-8

Barrio, E., and L. Picollo, “Notes on ω-inconsistent theories of truth in second-order languages”, The Review of Symbolic Logic 6, 4 (2013): 733–741. DOI: http://dx.doi.org/10.1017/S1755020313000269

Barrio, E., and B. Da Ré, “Truth without standard models: Some conceptual problems reloaded”, Journal of Applied Non-Classical Logics 28, 1 (2018): 122–139. DOI: http://dx.doi.org/10.1080/11663081.2017.1397326

Cobreros, P., P. Egré, D. Ripley and R. van Rooij, “Vagueness, truth and permissive consequence”, pages 1–24 in T. Achourioti et. al. (eds.), Unifying the Philosophy of Truth, Springer, 2014. DOI: http://dx.doi.org/10.1007/978-94-017-9673-6_21

Cook, R., “What is a truth value and how many are there?”, Studia Logica 92, 2 (2009): 183. DOI: http://dx.doi.org/10.1007/s11225-009-9194-1

Cornelis, C., G. Deschrijver and E. Kerre, “Advances and challenges in interval-valued fuzzy logic”, Fuzzy Sets and Systems 157, 5 (2006): 622–627. DOI: http://dx.doi.org/10.1016/j.fss.2005.10.007

Edgington, D., “Vagueness by degrees”, pages 294–316 in R. Keefe and P. Smith (eds.), Vagueness by Degrees, MIT Press, 1997.

Field, H., Saving Truth from Paradox, Oxford University Press, New York, 2008. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199230747.001.0001

Goguen, J., “The logic of inexact concepts”, Synthese 19, 3–4 (1969): 25–373. DOI: http://dx.doi.org/10.1007/BF00485654

Gupta, A., “In praise of a logic of definitions that tolerates ω-inconsistency”, Philosophical Issues 28, 1 (2018): 176–195.

Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, volume 4, Springer Science & Business Media, 2013. DOI: http://dx.doi.org/10.1007/978-94-011-5300-3

Hájek, P., J. Paris and J. Shepherdson, “The liar paradox and fuzzy logic”, The Journal of Symbolic Logic 65, 1 (2000): 339–346. DOI: http://dx.doi.org/10.2307/2586541

Halbach, V., Axiomatic Theories of Truth, Cambridge University Press, 2011. DOI: http://dx.doi.org/10.1017/CBO9780511921049

Keefe, R., Theories of Vagueness, Cambridge University Press, 2000.

Kripke, S., “Outline of a theory of truth”, Journal of Philosophy 72, 19 (1975): 690–716. DOI: http://dx.doi.org/10.2307/2024634

Pailos, F., and L. Rosenblatt, “Non-deterministic conditionals and transparent truth”, Studia Logica 103, 3 (2015): 579–598. DOI: http://dx.doi.org/10.1007/s11225-014-9580-1

Priest, G., “The logic of paradox”, Journal of Philosophical Logic 8, 1 (1979): 219–241. DOI: http://dx.doi.org/10.1007/BF00258428

Priest, G., Beyond the Limits of Thought, Oxford University Press, 2002. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199254057.001.0001

Priest, G., “What if? the exploration of an idea”, The Australasian Journal of Logic 14, 1 (2017). DOI: http://dx.doi.org/10.26686/ajl.v14i1.4028

Priest, G., et al., “Inclosures, vagueness, and self-reference”, Notre Dame Journal of Formal Logic 51, 1 (2010): 69–84. DOI: http://dx.doi.org/10.1215/00294527-2010-005

Restall, G., “Arithmetic and truth in Łukasiewicz logic”, Logique et Analyse 140 (1992): 303–312.

Restall, G., “On logics without contraction”, PhD Thesis, University of Queensland, 1993.

Wright, C., “On the coherence of vague predicates”, Synthese 30, 3 (1975): 325–365. DOI: http://dx.doi.org/10.1007/BF00485049

Yatabe, S., “Yablo-like paradoxes and co-induction”, pages 90–103 in New Frontiers in Artificial Intelligence, Springer, 2011. DOI: http://dx.doi.org/10.1007/978-3-642-25655-4_8

Logic and Logical Philosophy

Downloads

  • PDF

Published

2020-02-28

How to Cite

1.
DA RÉ, Bruno and TEIJEIRO, Paula. Sorites, Curry and Suitable Models. Logic and Logical Philosophy. Online. 28 February 2020. Vol. 29, no. 4, pp. 593-614. [Accessed 6 July 2025]. DOI 10.12775/LLP.2020.006.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 4 (2020): December

Section

Articles

Stats

Number of views and downloads: 694
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

paradoxes, vagueness, truth, ω-inconsistency, Łukasiewicz logic
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop