Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

On the System CB1 and a Lattice of the Paraconsistent Calculi
  • Home
  • /
  • On the System CB1 and a Lattice of the Paraconsistent Calculi
  1. Home /
  2. Archives /
  3. Vol. 29 No. 2 (2020): June /
  4. Articles

On the System CB1 and a Lattice of the Paraconsistent Calculi

Authors

  • Janusz Ciuciura Department of Logic and Methodology of Science, Institute of Philosophy, Faculty of Philosophy and History https://orcid.org/0000-0001-9965-9822

DOI:

https://doi.org/10.12775/LLP.2019.035

Keywords

paraconsistent logic, paraconsistency, hierarchy of the paraconsistent calculi

Abstract

In this paper, we present a calculus of paraconsistent logic. We propose an axiomatisation and a semantics for the calculus, and prove several important meta-theorems. The calculus, denoted as CB1, is an extension of systems PI, C min and B1, and a proper subsystem of Sette’s calculus P1. We also investigate the generalization of CB1 to the hierarchy of related calculi.

References

Asenjo, F.G., and J. Tamburino, “Logic of antinomies”, Notre Dame Journal of Formal Logic 16, 1 (1975): 17–44. DOI: http://dx.doi.org/10.1305/ndjfl/1093891610

Avron, A., O. Arieli and A. Zamansky, Theory of Effective Propositional Paraconsistent Logics, Studies in Logic, Mathematical Logic and Foundations, vol. 75, College Publications, 2018.

Batens, D., “Paraconsistent extensional propositional logics”, Logique et Analys 23, 90–91 (1980): 195–234.

Carnielli, W., and M.E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, Logic, Epistemology, and the Unity of Science, vol. 40, International Publishing, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-33205-5

Carnielli, W., M.E. Coniglio and J. Marcos, “Logics of formal inconsistency”, Chapter 1, pages 1–93, in D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd edition, vol. 14, Springer, 2007. DOI: http://dx.doi.org/10.1007/978-1-4020-6324-4_1

Carnielli, W., and J. Marcos, “Limits for paraconsistent calculi”, Notre Dame Journal of Formal Logi 40, 3 (1999): 375–390. DOI: http://dx.doi.org/10.1305/nd-jfl/1022615617

Ciuciura, J., “Paraconsistent heap. A Hierarchy of mbCn-systems”, Bulletin of the Section of Logic 43, 3/4 (2014): 173–182.

Ciuciura, J., “Paraconsistency and Sette’s calculus P1”, Logic and Logical Philosophy 24, 2 (2015): 265–273. DOI: http://dx.doi.org/10.12775/LLP.2015.003

Ciuciura, J., Hierarchies of the Paraconsistent Calculi (in Polish), Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2018.

da Costa, N.C.A., “On the theory of inconsistent formal systems”, Notre Dame Journal of Formal Logic 15, 4 (1974): 497–510. DOI: http://dx.doi.org/10.1305/nd-jfl/1093891487

da Costa. N.C.A., and J.-Y. Béziau, “Carnot’s logic”, Bulletin of the Section of Logic 22, 3 (1993): 99–105.

Jaśkowski, S., “Rachunek zdań dla systemów dedukcyjnych sprzecznych” (in Polish), Societatis Scientiarum Torunensis Sect. A, I, 5 (1948): 57–77. First English translation: “Propositional calculus for contradictory deductive systems”, Studia Logica 24 (1969): 143–157. Second one: “A propositional calculus for inconsistent deductive systems”, Logic and Logical Philosophy, 7 (1999): 35–56. DOI: http://dx.doi.org/10.12775/LLP.1999.003

Loparić, A., “A semantical study of some propositional calculi”, The Journal of Non-Classical Logic 3, 3 (1986): 73–95.

Pogorzelski, W.A., and P. Wojtylak, Completeness Theory for Propositional Logics, Studies in Universal Logic, Birkhäuser, Basel, 2008. DOI: http://dx.doi.org/10.1007/978-3-7643-8518-7

Qingyu, Z., “A weak paraconsistent conditional logic”, Journal of Non-Classical Logic 8, 1 (1991): 45–57.

Sette, A.M., “On the propositional calculus P 1 ”, Mathematica Japonicae 18, 3 (1973): 173–180.

Tuziak, R., “Paraconsistent extensions of positive logic”, Bulletin of the Section of Logic 25, 1 (1996): 15–20.

Urbas, I., “A note on ‘Carnot’s logic’”, Bulletin of the Section of Logic 23, 3 (1994): 118–125

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-12-02

How to Cite

1.
CIUCIURA, Janusz. On the System CB1 and a Lattice of the Paraconsistent Calculi. Logic and Logical Philosophy. Online. 2 December 2019. Vol. 29, no. 2, pp. 223-237. [Accessed 1 July 2025]. DOI 10.12775/LLP.2019.035.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 2 (2020): June

Section

Articles

Stats

Number of views and downloads: 712
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

paraconsistent logic, paraconsistency, hierarchy of the paraconsistent calculi
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop