ω-circularity of Yablo's paradox

Ahmet Çevik

DOI: http://dx.doi.org/10.12775/LLP.2019.032

Abstract


In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we both strengthen arguments for the ω-inconsistency of Yablo’s paradox and present a compromise solution of the problem emerged from Yablo’s and Priest’s conflicting theses.

Keywords


self-reference; Yablo's paradox; ω-circularity; ω-inconsistent theories; impredicativity

Full Text:

PDF

References


Beall, J.C., 2001, “Is Yablo’s paradox non-circular?”, Analysis 61 (3): 176–187. DOI: http://dx.doi.org/10.1093/analys/61.3.176

Beringer, T., and T. Schindler, 2017, “A graph-theoretic analysis of the semantic paradoxes”, Bulletin of Symbolic Logic 23 (4): 442–492. DOI: http://dx.doi.org/10.1017/bsl.2017.37

Cohen, P., 1966, Set Theory and the Continuum Hypothesis, W.A. Benjamin, Inc., New York.

Cook, R.T., 2006, “There are non-circular paradoxes (But Yablo’s isn’t one of them!)”, The Monist 89: 118–149.

Feferman, S., 2005, “Predicativity”, pages 590-624 in S. Shapiro (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, Oxford: Oxford University Press. DOI: http://dx.doi.org/10.1093/0195148770.003.0019

Hardy, J., 1995, “Is Yablo’s paradox liar-like?”, Analysis 55 (3): 197–198. DOI: http://dx.doi.org/10.1093/analys/55.3.197

Ketland, J., 2005, “Yablo’s paradox and w -inconsistency”, Synthese 145 (3):

–302. DOI: http://dx.doi.org/10.1007/s11229-005-6201-6

Priest, G., 1997, “Yablo’s paradox”, Analysis, 57 (4): 236–242. DOI: http://dx.doi.org/10.1093/analys/57.4.236

Sorensen, R., 1998, “Yablo’s paradox and Kindered infinite liars”, Mind 107 (425): 137–156. DOI: http://dx.doi.org/10.1093/mind/107.425.137

Visser, A., 1989, “Semantics and the liar paradox”, pages 617–706, chapter 10, in Handbook of Philosophical Logic, vol. 4, Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 167, Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-009-1171-0_10

Yablo, S., 1993, “Paradox without self-reference”, Analysis 53 (4): 251–252. DOI: http://dx.doi.org/10.1093/analys/53.4.251








logo
 
 
 
Financed by MNiSW on the basis of agreement no. 706/P-DUN/2018 (dated 10/05/18). Project 1: “Preparation of articles in English for eight editions of the journal Logic and Logical Philosophy over the period 2018–19; Vol. 27, No. 1–4 (2018), Vol. 28, No. 1–4 (2019)”; amount from the DUN grant: 64800 zł. Project 4: “Digitalisation of eight editions of the journal Logic and Logical Philosophy over the period 2018-19; Vol. 27, No. 1–4 (2018), Vol. 28, No. 1–4 (2019)”; amount from the DUN grant: 18600 zł.


ISSN: 1425-3305 (print version)
ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism