Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Connexive logics. An overview and current trends
  • Home
  • /
  • Connexive logics. An overview and current trends
  1. Home /
  2. Archives /
  3. Vol. 28 No. 3 (2019): September /
  4. Articles

Connexive logics. An overview and current trends

Authors

  • Hitoshi Omori Ruhr University, Bochum, Department of Philosophy I
  • Heinrich Wansing Ruhr University, Bochum, Department of Philosophy I

DOI:

https://doi.org/10.12775/LLP.2019.026

Keywords

connexive logic, principle of conjunctive contrariety, consequential implication, cancellation account of negation, contra-classical logics

Abstract

In this introduction, we offer an overview of main systems developed in the growing literature on connexive logic, and also point to a few topics that seem to be collecting attention of many of those interested in connexive logic. We will also make clear the context to which the papers in this special issue belong and contribute.

References

Richard B. Angell, “A propositional logic with subjunctive conditionals”, Journal of Symbolic Logic 27, 3 (1962): 327–343. DOI: http://dx.doi.org/10.2307/2964651

Ross Brady, “A Routley-Meyer affixing style semantics for logics containing Aristotle’s thesis”, Studia Logica 48, 2 (1989): 235–241. DOI: http://dx.doi.org/10.1007/BF02770514

John Cantwell, “The logic of conditional negation”, Notre Dame Journal of Formal Logic 49, 3 (2008): 245–260. DOI: http://dx.doi.org/10.1215/00294527-2008-010

Michael De and Hitoshi Omori, “Classical negation and expansions of Belnap-Dunn logic”, Studia Logica 103, 4 (2015): 825–851. DOI: http://dx.doi.org/10.1007/s11225-014-9595-7

Paul Egré and Guy Politzer, “On the negation of indicative conditionals”, pages 10–18 in M. Franke M. Aloni and F. Roelofsen (eds.), Proceedings of the Amsterdam Colloquium, 2013.

Luis Estrada-González and Elisángela Ramírez-Cámara, “A comparison of connexive logics”, IfCoLog Journal of Logics and their Applications 3, 3 (2016): 341–355.

Lloyd Humberstone, “Contra-classical logics”, Australasian Journal of Philosophy 78, 4 (2000): 438–474. DOI: http://dx.doi.org/10.1080/00048400012349741

Norihiro Kamide and Heinrich Wansing, Proof Theory of N4-related Paraconsistent Logics, vol. 54 of Studies in Logic, College Publications, London, 2015.

Andreas Kapsner, “Strong connexivity”, Thought 1, 2 (2012): 141–145. DOI: http://dx.doi.org/10.1002/tht3.19

Storrs McCall, “Connexive implication”, Journal of Symbolic Logic 31, 3 (1966): 415–433. DOI: http://dx.doi.org/10.2307/2270458

Storrs McCall, “Connexive implication and the syllogism”, Mind 76, 303 (1967): 346–356. DOI: http://dx.doi.org/10.1093/mind/LXXVI.303.346

Storrs McCall, “Connexive Gentzen”, Logic Journal of the IGPL 22, 6 (2014): 964–981. DOI: http://dx.doi.org/10.1093/jigpal/jzu019

Chris Mortensen, “Aristotle’s thesis in consistent and inconsistent logics”, Studia Logica 43, 1/2 (1984): 107–116. DOI: http://dx.doi.org/10.1007/BF00935744

Everett Nelson, “Intensional relations”, Mind 39 (1930): 440–453.

Sergei Odintsov, Constructive Negations and Paraconsistency, vol. 26 of Trends in Logic, Springer, 2008. DOI: http://dx.doi.org/10.1007/978-1-4020-6867-6

Grigory Olkhovikov, “On a new three-valued paraconsistent logic” (in Russian), pages 96–113 in Logic of Law and Tolerance, Ural State University Press, Yekaterinburg, 2001.

Hitoshi Omori, “A simple connexive extension of the basic relevant logic BD”, IfCoLog Journal of Logics and their Applications 3, 3 (2016): 467–478.

Hitoshi Omori, “From paraconsistent logic to dialetheic logic”, pages 111–134 in Holger Andreas and Peter Verdée (eds.), Logical Studies of Paraconsistent Reasoning in Science and Mathematics, Springer, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-40220-8_8

Hitoshi Omori and Katsuhiko Sano, “Generalizing functional completeness in Belnap-Dunn logic”, Studia Logica 103, 5 (2015): 883–917. DOI: http://dx.doi.org/10.1007/s11225-014-9597-5

Hitoshi Omori and Heinrich Wansing, “40 years of FDE: An introductory overview”, Studia Logica 105, 6 (2017): 1021–1049. DOI: http://dx.doi.org/10.1007/s11225-017-9748-6

Hitoshi Omori and Heinrich Wansing, “On contra-classical variants of Nelson logic N4 and its classical extension”, Review of Symbolic Logic 11, 4 (2018): 805–820. DOI: http://dx.doi.org/10.1017/S1755020318000308

Niki Pfeifer, “Experiments on Aristotle’s thesis: Towards an experimental philosophy of conditionals”, The Monist 95, 2 (2012): 223–240. DOI: http://dx.doi.org/10.5840/monist201295213

Claudio Pizzi, “Boethius’ thesis and conditional logic”, Journal of Philosophical Logic 6, 1 (1977): 283–302. DOI: http://dx.doi.org/10.1007/BF00262063

Claudio Pizzi, “Aristotle’s thesis between paraconsistency and modalization”, Journal of Applied Logic 3, 1 (2005): 119–131. DOI: http://dx.doi.org/10.1016/j.jal.2004.07.014

Claudio Pizzi and Timothy Williamson, “Strong Boethius’ thesis and consequential implication”, Journal of Philosophical Logic 26, 5 (1997): 569–588. DOI: http://dx.doi.org/10.1023/A:1004230028063

Graham Priest, “Negation as cancellation and connexive logic”, Topoi 18, 2 (1999): 141–148.

Shahid Rahman and Helge Rückert, “Dialogical connexive logic”, Synthese 127 (2001): 105–139.

Richard Routley, “Semantics for connexive logics I”, Studia Logica 37, 4 (1978): 393–412. DOI: http://dx.doi.org/10.1007/BF02176171

Richard Routley and Hugh Montgomery, “On systems containing Aristotle’s thesis”, Journal of Symbolic Logic 33, 1 (1968): 82–96. DOI: http://dx.doi.org/10.2307/2270055

Richard Routley and Valerie Routley, “Negation and contradiction”, Revista Colombiana de Matemáticas 19, 4 (1985): 201–230.

Heinrich Wansing, “Connexive modal logic”, pages 367–383 in Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds, and Heinrich Wansing (eds.), Advances in Modal Logic. Volume 5, King’s College Publications, 2005.

Heinrich Wansing, “A note on negation in categorial grammar” Logic Journal of the IGPL 15 (2007): 271–286. DOI: http://dx.doi.org/10.1093/jigpal/jzm012

Heinrich Wansing, “Connexive logic”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Fall 2014 edition, 2014. http://plato.stanford.edu/archives/fall2014/entries/logic-connexive/

Heinrich Wansing and Daniel Skurt, “Negation as cancellation, connexive logic, and qLPm”, Australasian Journal of Logic 15 (2018): 476–488. DOI: http://dx.doi.org/10.26686/ajl.v15i2.4869

Heinrich Wansing, Hitoshi Omori, and Thomas Ferguson (eds.), Connexive Logics, special issue of IfCoLog Journal of Logics and their Applications, 2016.

John Woods, “Two objections to system CC1 of connexive implication”, Dialogue 7, 3 (1968): 473–475. DOI: http://dx.doi.org/10.1017/S0012217300031279

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-07-09

How to Cite

1.
OMORI, Hitoshi and WANSING, Heinrich. Connexive logics. An overview and current trends. Logic and Logical Philosophy. Online. 9 July 2019. Vol. 28, no. 3, pp. 371-387. [Accessed 6 July 2025]. DOI 10.12775/LLP.2019.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 28 No. 3 (2019): September

Section

Articles

Stats

Number of views and downloads: 1450
Number of citations: 12

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

connexive logic, principle of conjunctive contrariety, consequential implication, cancellation account of negation, contra-classical logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop