Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Time and Physical Geometry. A Formalization of Putnam’s Proof
  • Home
  • /
  • Time and Physical Geometry. A Formalization of Putnam’s Proof
  1. Home /
  2. Archives /
  3. Vol. 29 No. 1 (2020): March /
  4. Articles

Time and Physical Geometry. A Formalization of Putnam’s Proof

Authors

  • Jan Czerniawski Jagiellonian University, Institute of Philosophy https://orcid.org/0000-0001-6434-7773

DOI:

https://doi.org/10.12775/LLP.2019.021

Keywords

time flow, eternalism, relativity, simultaneity, spacetime

Abstract

Putnam’s proof that time flow is incompatible with Relativity is underestimated, mostly due to Stein’s interpretation of the notion of reality in it as a two-term relation. This interpretation makes it vulnerable to easy criticism and makes various ways of escaping its conclusion possible. An alternative approach is proposed, resulting in a formalization which seems closer to Putnam’s intentions where reality is interpreted as a non-relational property. Although it makes the proof immune to all standard strategies of blocking the proof, it reveals its real weak point which consists in assuming an overly strong interpretation of the principle of relativity.

References

Bell, J.S., “How to teach special relativity”, pages 67–80 in J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge, Cambridge Univ. Press, 2004. DOI: http://dx.doi.org/10.1017/CBO9780511815676.011

Carter, B., “Causal structure in space-time”, General Relativity and Gravitation 1, 4 (1971): 349–391. DOI: http://dx.doi.org/10.1007/BF00759217

Czerniawski, J., “Teoria względności a upływ czasu”, Filozofia Nauki 2, 1 (1994): 95–100.

Czerniawski, J., “Nowa formalizacja dowodu Putnama, że czas nie płynie”, Filozofia Nauki 22, 1 (2014): 45–57.

Davies, P.C.W, and J.S. Bell, “John Bell” (interview with), pages 45–57 in P.C.W. Davies and J.R. Brown (eds.), The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics, Cambridge, Cambridge Univ. Press, 1986.

Denbigh, K., Three Concepts of Time, Berlin, Springer, 1981. DOI: http://dx.doi.org/10.1007/978-3-642-68082-3

Dieks, D., “Special relativity and the flow of time”, Philosophy of Science 55, 3 (1988): 456-460. DOI: http://dx.doi.org/10.1086/289452

Eilstein, H., “Prof. Shimony on “the transient Now””, Synthese 107, 2 (1996): 223–247. DOI: http://dx.doi.org/10.1007/BF00413607

Forrest, P., “The real but dead past: a reply to Braddon-Mitchell”, Analysis 64, 4 (2004): 358–62. DOI: http://dx.doi.org/10.1093/analys/64.4.358

Hinchliff, M., “The puzzle of change”, Noûs 30 (Supplement) (1996): 119–16. DOI: http://dx.doi.org/10.2307/2216239

James, W., The Principles of Psychology, vol. 1, London, MacMillan, 1891.

Lorentz, H.A., “The principle of relativity for uniform translations (1910–1912)”, pages 179–211 in H.A. Lorentz, Lectures on Theoretical Physics, vol. 3, London, MacMillan, 1931.

Maudlin, T., The Metaphysics Within Physics, Oxford, Oxford University Press, 2007. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199218219.001.0001

Putnam, H., “Time and physical geometry”, Journal of Philosophy 64, 8 (1967): 240–247. DOI: http://dx.doi.org/10.2307/2024493

Putnam, H., “Reply to Mauro Dorato”, European Journal of Analytic Philosophy 4, 2 (2008): 71–73.

Sarkar, S., and J. Stachel, “Did Malament prove the non-conventionality of simultaneity in the special theory of relativity?”, Philosophy of Science 66, 2 (1999): 208–220. DOI: http://dx.doi.org/10.1086/392684

Savitt, S., “The transient nows”, in W. Myrvold and J. Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony, Berlin, Springer, 2009. DOI: http://dx.doi.org/10.1007/978-1-4020-9107-0_18

Sider, T., Writing the Book of the World, Oxford, Oxford University Press, 2011. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199697908.001.0001

Stein, H., “On Einstein-Minkowski space-time”, Journal of Philosophy 65, 1 (1968): 5–23. DOI: http://dx.doi.org/10.2307/2024512

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-06-17

How to Cite

1.
CZERNIAWSKI, Jan. Time and Physical Geometry. A Formalization of Putnam’s Proof. Logic and Logical Philosophy. Online. 17 June 2019. Vol. 29, no. 1, pp. 97-114. [Accessed 7 July 2025]. DOI 10.12775/LLP.2019.021.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 1 (2020): March

Section

Articles

Stats

Number of views and downloads: 1639
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

time flow, eternalism, relativity, simultaneity, spacetime
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop