Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Classical Logic and the Liar
  • Home
  • /
  • Classical Logic and the Liar
  1. Home /
  2. Archives /
  3. Vol. 29 No. 1 (2020): March /
  4. Articles

Classical Logic and the Liar

Authors

  • Yannis Stephanou National and Kapodistrian University of Athens, Department of Philosophy and History of Science https://orcid.org/0000-0003-2720-8082

DOI:

https://doi.org/10.12775/LLP.2019.019

Keywords

liar paradox, truth, nonclassical logics

Abstract

The liar and kindred paradoxes show that we can derive contradictions when we reason in accordance with classical logic from the schema (T) about truth: S is true iff p, where ‘p’ is to be replaced with a sentence and ‘S’ with a name of that sentence. The paper presents two arguments to the effect that the blame lies not with (T) but with classical logic. The arguments derive contradictions using classical logic, but instead of appealing to (T), they invoke semantic claims that seem even harder to reject. The first argument relies on two standard semantic principles that are not disquotational and on the claim that if there is such a thing as the property of being true, then ‘true’ expresses that property. The second argument relies on a schema about meaning: S means that p, where ‘S’ and ‘p’ are to be replaced as before.

References

Barcan, M.R., “Quantification and ontology”, pages 75–87 in her Modalities: Philosophical Essays, New York: Oxford University Press, 1993 (reprinted with changes from Noûs 6, 3 (1972): 240–250).

Barwise, J., and J. Etchemendy, The Liar: An Essay on Truth and Circularity, New York: Oxford University Press, 1987.

Dummett, M., The Logical Basis of Metaphysics, London: Duckworth, 1991.

Dunn, J., and N. Belnap, “The substitution interpretation of the quantifiers”, Noûs 2, 2 (1968): 177–185. DOI: http://dx.doi.org/10.2307/2214704

Field, H., Saving Truth from Paradox, Oxford: Oxford University Press, 2008. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199230747.001.0001

Gaifman, H., “Pointers to truth”, The Journal of Philosophy 89, 5 (1992): 223–261. DOI: http://dx.doi.org/10.2307/2027167

Grover, D., J. Camp and N. Belnap, “A prosentential theory of truth”, Philosophical Studies 27, 2 (1975): 73–125. DOI: http://dx.doi.org/10.1007/BF01209340

Haack, S., Philosophy of Logics, Cambridge: Cambridge University Press, 1978. DOI: http://dx.doi.org/10.1017/CBO9780511812866

Horwich, P., Truth, 2nd edition, Oxford: Clarendon Press, 1998. DOI: http://dx.doi.org/10.1093/0198752237.001.0001

Kripke, S., “Is there a problem about substitutional quantification?”, pages 325–419 in G. Evans and J. McDowell (eds.), Truth and Meaning: Essays in Semantics, Oxford: Oxford University Press, 1976.

Künne, W., Conceptions of Truth, Oxford: Clarendon Press, 2003. DOI: http://dx.doi.org/10.1093/0199241317.001.0001

Pagin, P., “‘Means that’ and the liar”, pages 203–230 in H. Malmgren (ed.), Kvantifikator för en Dag: Essays Dedicated to Dag Westerståhl on His Sixtieth Birthday, Philosophical Communications, Web Series, no. 35, Sweden: Götenburg University, Department of Philosophy, 2006.

Priest, G., In Contradiction: A Study of the Transconsistent, 2nd edition, New York: Oxford University Press, 2006. DOI: http://dx.doi.org/10.1093/acprof:oso/9780199263301.001.0001

Prior, A., “Some problems of self-reference in John Buridan”, pages 130–146 in his Papers in Logic and Ethics, London: Duckworth, 1976.

Putnam, H., “The nature of mental states”, pages 429–440 in his Mind, Language and Reality: Philosophical Papers, vol. 2, Cambridge: Cambridge University Press, 1975 (first published as “Psychological predicates”, pages 37–48 in W. Capitan and D. Merrill (eds.), Art, Mind, and Religion, Pittsburgh: University of Pittsburgh Press, 1967). DOI: http://dx.doi.org/10.1017/CBO9780511625251.023

Read, S., “The truth-schema and the liar”, pages 3–17 in S. Rahman, T. Tulenheimo and E. Genot (eds.), Unity, Truth and the Liar: The Modern Relevance of Medieval Solutions to the Liar Paradox, Logic, Epistemology, and the Unity of Science, vol. 8, Springer, 2008. DOI: http://dx.doi.org/10.1007/978-1-4020-8468-3_1

Rumfitt, I., “Truth and meaning”, Aristotelian Society Supplementary Volume 88 (2014): 21–55.

Smith, N., “Semantic regularity and the liar paradox”, The Monist 89, 1 (2006): 178–202. DOI: http://dx.doi.org/10.5840/monist200689139

Soames, S., Understanding Truth, New York: Oxford University Press, 1999. DOI: http://dx.doi.org/10.1093/0195123352.001.0001

Stephanou, Y., “A propositional theory of truth”, Notre Dame Journal of Formal Logic 59, 4 (2018): 503–545. DOI: http://dx.doi.org/10.1215/00294527-2018-0013

Stern, J., Toward Predicate Approaches to Modality, Cham, Switzerland: Springer, 2016. DOI: http://dx.doi.org/10.1007/978-3-319-22557-9

Tarski, A., “The concept of truth in formalized languages”, pages 152–278 in his Logic, Semantics, Metamathematics, translated by J. H. Woodger and edited by J. Corcoran, 2nd edition, Indianapolis: Hackett, 1983.

Van Fraassen, B., “Presupposition, implication, and self-reference”, The Journal of Philosophy 65, 5 (1968): 136–152. DOI: http://dx.doi.org/10.2307/2024557

Williamson, T., “Vagueness and ignorance”, Aristotelian Society Supplementary Volume 66 (1992): 145–162. DOI: http://dx.doi.org/10.1093/aristoteliansupp/66.1.145

Williamson, T., “Indefinite extensibility”, Grazer Philosophische Studien 55 (1998): 1–24. DOI: http://dx.doi.org/10.5840/gps19985512

Williamson, T., “Truthmakers and the converse Barcan formula”, Dialectica 53, 3–4 (1999): 253–270. DOI: http://dx.doi.org/10.1111/j.1746-8361.1999.tb00186.x

Yablo, S., “New grounds for naive truth theory”, pages 312–330 in J.C. Beall (ed.), Liars and Heaps: New Essays on Paradox, Oxford: Clarendon Press, 2003.

Zardini, E., “Truth without contra(di)ction”, The Review of Symbolic Logic 4, 4 (2011): 498–535. DOI: http://dx.doi.org/10.1017/S1755020311000177

Logic and Logical Philosophy

Downloads

  • PDF

Published

2019-06-14

How to Cite

1.
STEPHANOU, Yannis. Classical Logic and the Liar. Logic and Logical Philosophy. Online. 14 June 2019. Vol. 29, no. 1, pp. 35-56. [Accessed 5 July 2025]. DOI 10.12775/LLP.2019.019.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 29 No. 1 (2020): March

Section

Articles

Stats

Number of views and downloads: 1360
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

liar paradox, truth, nonclassical logics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop