Boolean Connexive Logics: Semantics and tableau approach

Tomasz Jarmużek, Jacek Malinowski



In this paper we define a new type of connexive logics which we call Boolean connexive logics. In such logics negation, conjunction and disjunction behave in the classical, Boolean way. We determine these logics through application of the relating semantics. In the final section we present a tableau approach to the discussed logics.


Boolean connexive logics; connexive logic; relating semantics; tableau approach; relatedness

Full Text:



Epstein, R.L., 1979, “Relatedness and implication”, Philosophical Studies 36, 2: 137–173. DOI:

Epstein, R.L., 1990, The Semantic Foundations of Logic. Vol. 1: Propositional logics, Nijhoff International Philosophy Series, volume 35. DOI:

Ferguson, T.M., 2015,“Logics of nonsense and Parry systems”, Journal of Philosophical Logic 44, 1: 65–80. DOI:

Fine, K., 1986, “Analytic implication”, Notre Dame Journal of Formal Logic 27, 2: 169–179. DOI:

Jarmużek, T., 2013, “Tableau metatheorem for modal logics”, chapter 8 in R. Ciuni, H. Wansing and C. Willkomennen (eds.), Recent Trends in Philosphical Logic, series Trends in Logic, Springer Verlag. DOI:

Jarmużek, T., and B. Kaczkowski, 2014, “On some logic with a relation imposed on formulae: Tableau system F”, Bulletin of the Section of Logic 43, 1/2: 53–72.

Kapsner, A., 2012, “Strong connexivity”, Thought: A Journal of Philosophy 1, 2: 141–145. DOI:

McCall, S., 2012, “A history of connexivity”, pages 415–449 in D.M. Gabbay et al. (eds.), Handbook of the History of Logic, vol. 11, “Logic: A history of its central concepts”, Amsterdam: Elsevier. DOI:

Walton, D.N., “Philosophical basis of relatedness logic”, Philosophical Studies 36, 2: 115–136. DOI:

Wansing, H., 2014, “Connexive logic”, in Stanford Encyclopedia of Philosophy, access December 12, 2017.

ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism