Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Mereology and Infinity
  • Home
  • /
  • Mereology and Infinity
  1. Home /
  2. Archives /
  3. Vol. 25 No. 3 (2016): September /
  4. Articles

Mereology and Infinity

Authors

  • Karl-Georg Niebergall Humboldt-Universität zu Berlin

DOI:

https://doi.org/10.12775/LLP.2016.023

Keywords

mereology, infinity, axioms of finiteness, relative interpretability, second-order language

Abstract

This paper deals with the treatment of infinity and finiteness in mereology. After an overview of some first-order mereological theories, finiteness axioms are introduced along with a mereological definition of “x is finite” in terms of which the axioms themselves are derivable in each of those theories. The finiteness axioms also provide the background for definitions of “(mereological theory) T makes an assumption of infinity”. In addition, extensions of mereological theories by the axioms are investigated for their own sake. In the final part, a definition of “x is finite” stated in a second-order language is also presented, followed by some concluding remarks on the motivation for the study of the (first-order) extensions of mereological theories dealt with in the paper.

Author Biography

Karl-Georg Niebergall, Humboldt-Universität zu Berlin

Department of Philosophy

References

Bonevac, D, A., 1982, Reduction in the Abstract Sciences, Ridgeview Publishing Company.

Feferman, S., 1960, “Arithmetization of metamathematics in a general setting”,

Fundamenta Mathematicae 49: 35–92.

Fraenkel1, A., 1927, Zehn Vorlesungen über die Grundlegung der Mengenlehre; reproduced by Wissenschaftliche Buchgesellschaft, Darmstadt, 1972.

Goodman, N., 1951, Structure of Appearance, Reidel, Dordrecht.

Goodman, N., and W.V.O. Quine, 1947, “Steps toward a constructive nominalism”, The Journal of Symbolic Logic, 12: 105–122. DOI: 10.2307/2266485

Klaua, D., 1973, Grundbegriffe der axiomatischen Mengenlehre, Teil 2, Braunschweig.

Levy, A., 1958, “The independence of various definitions of finiteness”, Fundamenta Mathematicae, 46: 1–13.

Lewis, D., 1991, Parts of Classes, Blackwell, Oxford.

Niebergall, K.-G., 2000, “On the logic of reducibility: Axioms and examples”, Erkenntnis 53: 27–61.

Niebergall, K.-G., 2005, “Zur nominalistischen Behandlung der Mathematik”, pages 235–260 in J. Steinbrenner, O. Scholz und G. Ernst (eds.), Symbole, Systeme, Welten: Studien zur Philosophie Nelson Goodmans, Heidelberg, Synchron Wissenschaftsverlag der Autoren.

Niebergall, K.-G., 2009a, “Calculi of individuals and some extensions: An overview”, pages 335–354 in A. Hieke and H. Leitgeb (eds.): Reduction Abstraction  Analysis, Proceedings of the 31th International Ludwig Wittgenstein-Symposium in Kirchberg 2008, Ontos Verlag, Frankfurt–Paris–Lancaster–New Brunswick.

Niebergall, K.-G., 2009b, “On 2nd order calculi of individuals”, Theoria 24: 169–202.

Niebergall, K.-G., 2011a, “Unendlichkeit ausdrücken und Unendlichkeitsannahmen machen”, pages 957–976 in C.F. Gethmann (ed.), Lebenswelt und Wissenschaft. Deutsches Jahrbuch Philosophie, 2.

Niebergall, K.-G., 2011b, “Mereology”, pages 271–298 in R. Pettigrew and L. Horsten (eds.), The Continuum Companion to Philosophical Logic, Continuum, London.

Niebergall, K.-G., 2014, “Assumptions of Infinity”, pages 229–274 in G. Link (ed.), Formalism and Beyond. On the nature of mathematical discourse, de Gruyter, Boston–Berlin. DOI: 10.1515/9781614518471.229

Parsons, Ch., 1987, “Developing arithmetic in set theory without infinity: Some historical remarks”, History and Philosophy of Logic, 8: 201–213. DOI: 10.1080/01445348708837116

Quine, W.V.O, 1975, “On empirically equivalent systems of the world”, Erkenntnis, 9: 313–328. DOI: 10.1007/BF00178004

Schmidt, J., 1966, Mengenlehre I, Bibliographisches Institut Mannheim.

Schwabhäuser, W., with W. Szmielew and A. Tarski, 1983, Metamathematische Methoden in der Geometrie, Springer-Verlag.

Shapiro, S., 1991, Foundations without Foundationalism, Clarendon Press, Oxford. DOI: 10.1093/0198250290.001.0001

Takeuti, G., and W. Zaring, 1982: Introduction to Axiomatic Set Theory, 2nd edition, Springer, New York–Heidelberg–Berlin. DOI: 10.1007/978-1-4613-8168-6

Tarski, A., A. Mostowski, and R.M. Robinson, 1953, Undecidable Theories, North-Holland, Amsterdam.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2016-08-08

How to Cite

1.
NIEBERGALL, Karl-Georg. Mereology and Infinity. Logic and Logical Philosophy. Online. 8 August 2016. Vol. 25, no. 3, pp. 309-350. [Accessed 5 July 2025]. DOI 10.12775/LLP.2016.023.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 25 No. 3 (2016): September

Section

Articles

Stats

Number of views and downloads: 683
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

mereology, infinity, axioms of finiteness, relative interpretability, second-order language
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop