Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

Set-theoretic mereology
  • Strona domowa
  • /
  • Set-theoretic mereology
  1. Strona domowa /
  2. Archiwum /
  3. Tom 25 Nr 3 (2016): wrzesień /
  4. Artykuły

Set-theoretic mereology

Autor

  • Joel David Hamkins Nicolaus Copernicus University, Department of Logic
  • Makoto Kikuchi Kobe University

DOI:

https://doi.org/10.12775/LLP.2016.007

Słowa kluczowe

mereology, set theory, foundations of mathematics

Abstrakt

We consider a set-theoretic version of mereology based on the inclusion relation ⊆ and analyze how well it might serve as a foundation of mathematics. After establishing the non-definability of ∈ from ⊆, we identify the natural axioms for ⊆-based mereology, which constitute a finitely axiomatizable, complete, decidable theory. Ultimately, for these reasons, we conclude that this form of set-theoretic mereology cannot by itself serve as a foundation of mathematics. Meanwhile, augmented forms of set-theoretic mereology, such as that obtained by adding the singleton operator, are foundationally robust.

Biogramy autorów

Joel David Hamkins - Nicolaus Copernicus University, Department of Logic

Mathematics, Philosophy, Computer Science; The Graduate Center of The City University of New York

Makoto Kikuchi - Kobe University

Graduate School of System Informatics

Bibliografia

A. Baudisch, D. Seese, P. Tuschik, and M. Weese, “Decidability and quantifier-elimination”, pages 235–270 in Model-theoretic logics, Perspect. Math. Logic, Springer, New York, 1985.

L. Champollion and M. Krifka, “Mereology”, in Cambridge Handbook of Semantics, P. Dekker and M. Aloni (eds.) Cambridge University Press (in press).

C.C. Chang and H.J. Keisler, Model theory, volume 73 of “Studies in Logic and the Foundations of Mathematics”, North-Holland Publishing Co., Amsterdam, third edition, 1990.

Ju.L. Eršov, “Decidability of the elementary theory of relatively complemented lattices and of the theory of filters”, Algebra i Logika Sem., 3 3 (1964): 17–38.

J.D. Hamkins, “Is the inclusion version of Kunen inconsistency theorem true?” MathOverflow answer, 2013. http://mathoverflow.net/a/144236/1946 (accessed 25.04.2016).

G. Hellman, “Mereology in philosophy of mathematics”, preprint available on the author’s web page at http://www.tc.umn.edu/~hellm001/Publications/MereologyandPhilMath.pdf.

W. Hodges, Model Theory, volume 42 of “Encyclopedia of Mathematics and its Applications”, Cambridge University Press, Cambridge, 1993.

A. Kanamori, “The empty set, the singleton, and the ordered pair”, Bull. Symbolic Logic, 9, 3 (2003): 273–298. DOI:10.2178/bsl/1058448674

D. Lewis, Parts of Classes, Blackwell, 1991.

J.D. Monk, Mathematical Logic, Springer-Verlag, New York–Heidelberg, 1976. Graduate Texts in Mathematics, No. 37.

B. Poizat, A Course in Model Theory, Universitext, Springer-Verlag, New York, 2000. An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.

A. Varzi, “Mereology”, in The Stanford Encyclopedia of Philosophy (Spring 2016 Edition), E.N. Zalta (ed.). http://plato.stanford.edu/archives/spr2016/entries/mereology/

M. Weese, “Decidable extensions of the theory of Boolean algebras”, pages 983–1066 in Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

16.05.2016

Jak cytować

1.
HAMKINS, Joel David & KIKUCHI, Makoto. Set-theoretic mereology. Logic and Logical Philosophy [online]. 16 maj 2016, T. 25, nr 3, s. 285–308. [udostępniono 4.7.2025]. DOI 10.12775/LLP.2016.007.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 25 Nr 3 (2016): wrzesień

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 656
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

mereology, set theory, foundations of mathematics
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa