Sequents for non-wellfounded mereology

Paolo Maffezioli



The paper explores the proof theory of non-wellfounded mereology with binary fusions and provides a cut-free sequent calculus equivalent to the standard axiomatic system.


mereology; sequent calculi; proof theory

Full Text:



Cotnoir, A., and A. Bacon, “Non-wellfounded mereology”, The Review of Symbolic Logic, 5, 2 (2012): 187–204. DOI:10.1017/S1755020311000293

D’Agostino, M., and M. Mondadori, “The taming of the cut. Classical refutations with analytic cut”, Journal of Logic and Computation, 4, 3 (1994): 285–319. DOI:10.1093/logcom/4.3.285

Dyckhoff, R., and S. Negri, “Geometrisation of first-order logic”, The Bullettin of Symbolic Logic,21,2 (2015):123–163. DOI:10.1017/bsl.2015.7

Maffezioli, P., “Analytic rules for mereology”, Studia Logica, 104, 1 (2016): 79–114. DOI:10.1007/s11225-015-9623-2

Negri, S., “Proof analysis beyond geometric theories: From rule systems to systems of rules”, Journal of Logic and Computation, 26, 2 (2016): 513–537. DOI:10.1093/logcom/exu037

Negri, S., and J. von Plato, Proof Analysis. A Contribution to Hilbert’s Last Problem, Cambridge University Press, 2011. DOI:10.1017/CBO9781139003513

Troelstra, A.S., and H. Schwichtemberg, Basic Proof Theory, Cambridge University Press, 2nd edition, 2000. DOI:10.1017/CBO9781139168717

Varzi, A., “The extensionality of parthood and composition”, The Philosophical Quarterly, 10, 58 (2008): 108–33. DOI:10.1111/j.1467-9213.2007.542.x

Varzi, A., “Mereology”, The Stanford Encyclopedia of Philosophy (Spring 2016 Edition), E.N. Zalta (ed.)

ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism