To found or not to found? That is the question!

Davide Bondoni

DOI: http://dx.doi.org/10.12775/LLP.2014.021

Abstract


Aim of this paper is to confute two views, the first about Schröder’s presumptive foundationalism, according to he founded mathematics on the calculus of relatives; the second one maintaining that Schröder only in his last years (from 1890 onwards) focused on an universal and symbolic language (by him called pasigraphy). We will argue that, on the one hand Schröder considered the problem of founding mathematics already solved by Dedekind, limiting himself in a mere translation of the Chain Theory in the language of the relatives. On the other hand, we will show that Schröder’s pasigraphy was connaturate to himself and that it roots in his very childhood and in his love for foreign languages.

Keywords


Dedekind; Schröder; principle of induction; calculus of relatives; theory of chains

Full Text:

PDF

References


AA.VV., Diener 10053, manuscript, property of the author, 1876–1902.

D.S. Alexander, A History of Complex Dynamics, from Schröder to Fatour and Julia, Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig–Wiesbaden, 1994.

D. Bondoni, La teoria delle relazioni nell’algebra della logica schröderiana, LED edizioni, Milano, 2007.

D. Bondoni, “Structural features in Ernst Schröder’s work: Part 1”, Logic and Logical Philosophy, 20 (2011), 4: 327–359. DOI: 10.12775/LLP.2011.022

D. Bondoni, “Algebra, what else?”, pp. ix–xli in [Sch12] (2012).

D. Bondoni, “Structural features in Ernst Schröder’s work: Part 2”, Logic and Logical Philosophy, 21 (2012), 3: 271–315. DOI: 10.12775/LLP.2012.014

D. Bondoni, “Review of [Leg11]”, Zentralblatt MATH (2013), zbl 06208358.

D. Bondoni, Schröder e la teoria dei gruppi, Lettera Matematica Pristem (2014), next to be published.

G. Brady, From Peirce to Skolem. A Neglected Chapter in the History of Logic, Elsevier, Amsterdam, 2000.

B. Coecke, “Quantum picturalism”, arXiv:0908.1787v1 (2009), 31 pages.

B. Coecke, “Graphical and automated reasoning for quantum algorithms and protocols”, www.cs.ox.ac.uk/qisw2012/program.html (2012), 92 pages, downloaded October 12, 2013.

R. Dedekind, Was sind und was sollen die Zahlen? From Kant to Hilbert. A Source Book in the Foundations of Mathematics, vol. 2, W. Ewald (ed.), Oxford University Press, 2005 (second edition). English translation of 1888 Dedekind’s book, pp. 787–833.

RR. Dipert, “Individual and extensional logic in Schröder’s Vorlesungen über die Algebra der Logik”, Modern Logic, 1 (1990–1991), 2/3: 140–159.

RR. Dipert, “The life and work of Ernst Schröder”, Modern Logic, 1 (1990–1991), 2/3: 119–139.

J. de Maimieux, Pasigraphie, premiers élémens du nouvel artscience d’écrire et d’imprimer en une langue de maniére a être lu et entendu dans toute autre langue sans traduction; inventés et rédigés par J.*** de M.***, ancien major d’infanterie allemande, Bureau de la Pasigraphie, Paris, 1797.

F. Iavarnaro, D.S. Alexander, and A. Rosa, Early Days in Complex Dynamics. A History of Complex Dynamics in One Variable During 1906–1942, American Mathematical Society, Providence, Rhode Island, 2012.

Legris, “Deux approches des relations logique-mathèmatiques: Frege et Schröder”, pp. 215–254 in Justifier en mathèmatiques, D. Flament and Ph. Nabonnand (eds.), Paris, Èditions de la Maison des sciences de l’homme, 2011.

J. Lott, Die Kunst der “Volapük” schell zu lernen, A. Kartleben’s Verlag, Wien–Pest–Leipzig, 1888.

E.O. Lovett, “Mathematics at the International Congress of Philosophy, Paris, 1900”, Bulletin of the American Mathematical Society, 7 (1901), 4: 157–183.

L. Löwenheim, “Einkleidung der Mathematik in Schröderschen Relativkalkul”, Journal of Symbolic Logic 5 (1940): 1–15.

M. Paić, Pasigraphie mittels arabischer Zahlzeichen. Ein Versuch, Buckdruckerei von I.C. Soppron, Semlin, 1859.

V. Peckhaus, “Ernst Schröder und die pasigraphischen Systeme von Peano und Peirce”, Modern Logic, 1 (1990–1991), 34/35: 174–205.

V. Peckhaus, “Ernst Schröder und der Logizismus”, pp. 108–119 in Philosophie und Logik: Frege-Kolloquien Jena 1989/1991, W. Stelzner (ed.), Berlin–New York, Walter de Gruyter, 1993.

V. Peckhaus, Logik, Mathesis universalis und allgemeine Wissenschaft. Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert, Akademie Verlag GmbH, Berlin, 1997 (in particular see the sixth chapter therein, entitled “Ernst Schröder: Absolute Algebra und Leibnizprogramm”, pp. 233–296).

V. Peckhaus, “Schröders Logic”, pp. 557–610 in The Rise of Modern Logic: Handbook of the History and Philosophy of Logic, vol. 3, D.M. Gabbay and J. Woods (eds.), Amsterdam, Elsevier, 2004.

C.S. Peirce, “Existential graphs”, in Collected Papers by C.S. Peirce, vol. 4, C. Hartshorne and P. Weiss (eds.), Cambridge University Press, 1933.

E. Schröder, “Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen”, Mathematische Annalen, 2 (1869): 317–365.

E. Schröder, Lehrbuch der Arithmetik und Algebra für Lehrer und Studierende, Druck und Verlag von B.G. Teubner, Leipzig, 1873.

E. Schröder, “Veredelung von Pflanzen”, Verhandlungen des naturwissenschaftlichen Vereins in Karlsruhe, 10 (1888): 19–20.

E. Schröder, Über das Zeichen: Festrede bei dem Direktoratswechsel an der Technischen Hochschule zu Karlsruhe am 22. novemeber 1890, Braun, Karlsruhe, 1890.

E. Schröder, “Note über die Algebra der binären Relative”, Mathematische Annalen, 46 (1895): 144–158.

E. Schröder, “Die selbständige Definition der Mächtigkeiten 0,1,2,3 und die explizite Gleichzahligkeitsbedingung”, Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum, 71 (1898): 363–376.

E. Schröder, Über Pasigraphie, ihren gegenwärtigen Stand und die pasigraphische Bewegung in Italien, Verhandlungen des Ersten Internationalen Mathematiker-Kongresses in Zürich vom 9. bis 11. August 1897 (Leipzig) (Ferdinand Rudio, ed.), Druck und Verlag von B.G. Teubner, 1898, pp. 147–162.

E. Schröder, “Ueber zwei Definitionen der Endlichkeit und G. Cantor’sche Sätze”, Nova Acta Academiae Caesareae Leopoldino Carolinae Germanicae Naturae Curiosorum, 71 (1898): 301–362.

E. Schröder, “On Pasigraphy. Its Present State and the Pasigraphic Mouvement in Italy”, The Monist, 9 (1899): 44–62, corrigenda p. 320. This is the English translation of [Sch98b] performed by the author himself. Please, notice that there are important differences between the original German version and the English one.

E. Schröder, Sur une extension de l’idée d’ordre, Bibliothéque du congrés international de philosophie (Paris), vol. 3, Librairie Armand Collin, 1901, III. volume, Logique et Histoire des Sciences, pp. 235–240.

E. Schröder, “Über G. Cantorsche Sätze”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 5 (1901): 81–82.

[Sch66] , Vorlesungen über die Algebra der Logik, vol. 3, Chelsea Publishing Company, Bronx–New York, 1966; reprint of the 1895 edition.

E. Schröder, On the Formal Elements of the Absolute Algebra, D. Bondoni (ed.), Led edizioni, Milano, 2012. English translation.

A. Tarski and S. Givant, A Formalization of Set Theory without Variables, American Mathematical Society, Providence–Rhode Island, 1987.

Unknown, Ernst Schröder, Geistiges Deutschland. Deutsche Zeitgenossen auf dem Gebiete der Literatur, Wissenschaften und Musik (Berlin-Charlottenburg), K. Barton (ed.), Adolf Eckstein Verlag, 1901. English translation in [Sch12, pp. 73–79]. The two original 1901 leaves concerning Schröder are property of the author.

R. Vilkko, A Hundred Years of Logical Investigations. Reform Efforts of Logic in Germany, 1871–1879, Mentis Verlag GmbH, Padeborn, 2002 (see especially pp. 101–118).

M.W. Wood, Dictionary of Volapük. Volapük-English/English-Volapük, C.E. Sprague, The Office Publishing Company, New york, 1889.








ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism