Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Intuitionistic overlap structures
  • Home
  • /
  • Intuitionistic overlap structures
  1. Home /
  2. Archives /
  3. Vol. 22 No. 2 (2013): June /
  4. Articles

Intuitionistic overlap structures

Authors

  • Francesco Ciraulo Università di Padova

DOI:

https://doi.org/10.12775/LLP.2013.011

Keywords

overlap algebras, connection structures, mereological fields, constructive reasoning

Abstract

We study some connections between two kinds of \emph{overlap} relations: that of point-free geometries in the sense of Grzegorczyk, Whitehead and Clarke, and that recently introduced by Sambin within his constructive approach to topology. The main thesis of this paper is that the overlap relation in the latter sense is a necessary tool for a constructive and intuitionistic development of point-free geometry.

Author Biography

Francesco Ciraulo, Università di Padova

Dipartimento di Matematica

References

Biacino, L., and G. Gerla, “Connection structures”, Notre Dame J. Formal Logic, 32 (1991): 242–247.

Biacino, L., and G. Gerla, “Connection structures: Grzegorczyk’s and Whitehead’s definiitons of point”, Notre Dame J. Formal Logic, 37 (1996): 431–439.

Ciraulo, F., “Regular opens in formal topology and a representation theorem for overlap algebras”, Ann. Pure Appl. Logic, 164 (2013): 421–436.

Ciraulo, F., M.E. Maietti and P. Toto, “Constructive version of Boolean algebra”, Logic Journal of The IJPL, 21 (2013): 44–62.

Ciraulo, F., and G. Sambin, “The overlap algebra of regular opens”, J. Pure Appl. Algebra, 214 (2010): 1988–1995.

Gerla, G., “Pointless geometries”, in Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 1015–1031.

Grzegorczyk, A., “Axiomatizability of geometry without points”, Synthese, 12 (1960): 228–235.

Johnstone, P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, Cambridge, 1986.

Joyal, A., and M. Tierney, An extension of the Galois Theory of Grothendieck, Memoirs of the Amer. Math. Soc. 309, 1984.

Mac Lane, S., and I. Moerdijk, Sheaves in Geometry and Logic. A First Introduction to Topos Theory, Springer-Verlag, New York, 1994.

Sambin, G., “Some points in formal topology”, Theoretical Computer Science, 305 (2003): 347–408.

Sambin, G., The Basic Picture and Positive Topology. New structures for Constructive Mathematics, Oxford University Press, Oxford (to appear).

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-06-11

How to Cite

1.
CIRAULO, Francesco. Intuitionistic overlap structures. Logic and Logical Philosophy. Online. 11 June 2013. Vol. 22, no. 2, p. 201–212. [Accessed 2 July 2025]. DOI 10.12775/LLP.2013.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 22 No. 2 (2013): June

Section

Articles

Stats

Number of views and downloads: 691
Number of citations: 1

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

overlap algebras, connection structures, mereological fields, constructive reasoning
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop