### The Kuznetsov-Gerčiu and Rieger-Nishimura logics

DOI: http://dx.doi.org/10.12775/LLP.2008.006

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Bezhanishvili, G., “Locally finite varieties”, Algebra Universalis 46 (2001), 531–548.

Bezhanishvili, G., and R. Grigolia, “Subalgebras and homomorphic images of the Rieger-Nishimura lattice”, pp. 9–16 in Proceedings of the Institute of Cybernetics, volume 1, Georgian Academy of Sciences, Tbilisi, 2000.

Bezhanishvili, N., Lattices of Intermediate and Cylindric Modal Logics, PhD thesis, ILLC, University of Amsterdam, 2006.

Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford University Press, 1997.

Citkin, A.I., “An example of prelocally tabular superintuitionistic propositional logic”, pp. 97–99 in Logic and Foundations of Mathematics, Vilnius, 1982.

Davey, B., and H. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990.

Esakia, L., “Gödel-Löb modal system – addendum”, pp. 77–79 in Proceedings of the third International Conference, Smirnov’s Readings, Moscow, 2001, Russian Academy of Sciences (Russian).

Gerčiu, V.Ja., “Correction to the article The finite approximability of superintuitionistic logics, Mat. Issled. 7 (1972), 1(23), 186–192”, Mat. Issled. 7 (1972), 3 (25), 278 (Russian).

Gerčiu, V.Ja., “The finite approximability of superintuitionistic logics”, Mat. Issled. 7 (1972), 1 (23), 186–192 (Russian).

Gerčiu, V.Ja., and A.V. Kuznetsov, “The finitely axiomatizable superintuitionistic logics”, Soviet Mathematics Doklady 11 (1970), 1654–1658.

Harrop, R., “On the existence of finite models and decision procedures for propositional calculi”, Proc. Cambridge Philos. Soc. 54 (1958), 1–13.

Jankov, V.A., “The construction of a sequence of strongly independent superintuitionistic propositional calculi”, Soviet Mathematics Doklady 9 (1968), 806–807.

Kracht, M., “Prefinitely axiomatizable modal and intermediate logics”, Mathematical Logic Quarterly, 39 (1993), 301–322.

Kuznetsov, A.V., and V.Ja. Gerčiu, “Superintuitionistic logics and finite approximability”, Soviet Mathematics Doklady, 11 (1970), 6, 1614–1619.

Kuznetsov, A.V., “Superintuitionistic logics”, Mat. Issled. 10 (1975), 2 (36), 150–158, 284–285 (Russian).

Kuznetsov, A.V., “Means for detection of nondeducibility and inexpressibility”, pp. 5–33 in Logical Inference (Moscow, 1974), Nauka, Moscow, 1979, (Russian).

Kuznetsov, A.V., “Algorithms, algebras and intuitionistic logic”, Mat. Issled. (98, Neklass. Logiki) 152 (1987), 10–14 (Russian).

Kuznetsov, A.V., and A.Yu. Muravitsky, “On superintuitionistic logics as fragments of proof logic extensions”, Studia Logica 45 (1986), 1, 77–99.

Mardaev, S.I., “The number of prelocal-tabular superintuitionistic propositional logics”, Algebra and Logic, 23 (1984), 1, 56–66.

Nishimura, I., “On formulas of one variable in intuitionistic propositional calculus”, Journal of Symbolic Logic 25 (1960), 327–331.

Rieger, L., “On the lattice theory of Brouwerian propositional logic”, Acta fac. rerum nat. Univ. Car. 189 (1949), 1–40.

*Logic and Logical Philosophy*over the period 2018–19; Vol. 27, No. 1–4 (2018), Vol. 28, No. 1–4 (2019)”; amount from the DUN grant: 64800 zł. Project 4: “Digitalisation of eight editions of the journal

*Logic and Logical Philosophy*over the period 2018-19; Vol. 27, No. 1–4 (2018), Vol. 28, No. 1–4 (2019)”; amount from the DUN grant: 18600 zł.

ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)