### Modalities as interactions between the classical and the intuitionistic logics

DOI: http://dx.doi.org/10.12775/LLP.2006.012

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

P. Blackburn, M. de R?ke, and Yde Venema, Modal Logic. Cambridge University Press, 2001.

A. Horn, “Free s5 algebras”, NotreDame Journal of Formal Logic 29(1) (1978), 189–191.

B. Jónsson and A. Tarski, “Boolean algebras with operators I”, American J. Mathematics 73 (1951), 891–939.

H.M. MacNeille, “Partially ordered sets”, Transactions of the American Mathematical Society 42 (1937), 416–460.

J.C.C. McKinsey and A. Tarski, “The algebra of topology”, The Annals of Mathematics 45(1) (1944), 141–191.

J.C.C. McKinsey and A. Tarski, “On closed elements in closure algebras”, The Annals of Mathematics 47(1) (1946), 126–162.

H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN, Warszawa, 1963.

A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory. Cambridge University Press, 2 edition, 2000.

S. Vickers, Topology via Logic. Cambridge University Press, 1989.

M. Walicki, “Modalities as interactions between the classical and the intuitionistic logics”, Technical Report 330, Department of Informatics, University of Bergen, 2006.

Print ISSN: 1425-3305

Online ISSN: 2300-9802