The laws of non-bivalent probability

John Cantwell



Non-bivalent languages (languages containing sentences that can be true, false or neither) are given a probabilitistic interpretation in terms of betting quotients. Necessary and sufficient conditions for avoiding Dutch books—the laws of non-bivalent probability—in such a setting are provided.


non-bivalent probability; non-bivalent languages

Full Text:



De Finetti, B., “La prévision: Ses lois logiques, ses sources subjectives”, Annales de l’Institut Henri Poincaré 7 (1937), 1–68.

Fine, K., “Vagueness, truth and logic”, Synthese 30 (1975), 265–300.

Kamp, H., “Two theories about adjectives”, in: E. Keenan, (ed.), Formal Semantics of Natural Language, Cambridge University Press, Cambridge, 1975, pages 123–155.

Lewis, D., “Probabilities of conditionals and conditional probabilities”, Philosophical Review 85 (1976), 297–315.

McDermott, M., “On the truth conditions of certain ‘if’-sentences”, Philosophical Review 105 (1996), 1–37.

McGee, V., “Conditional probabilities and compounds of conditionals”, Philosophical Review 98 (1989), 485–542.

Milne, P., “Bruno de Finetti and the logic of conditional events”, British Journal for the Philosophy of Science 48 no. 2 (1997), 195–232.

Ramsey, F.P., Truth and probability, Routledge and Kegan Paul, New York, 1931.

Strawson, P., “On referring”, Mind, 59(235) (1950), 320–344.

van Frassen, B.C., “Singular terms, truth value gaps, and free logic”, Journal of Philosophy, 63(17) (1966), 481–495.

ISSN: 1425-3305 (print version)

ISSN: 2300-9802 (electronic version)

Partnerzy platformy czasopism