Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Equating categorially names and quantifiers within first-order logic
  • Home
  • /
  • Equating categorially names and quantifiers within first-order logic
  1. Home /
  2. Archives /
  3. No. 10 (2002) /
  4. Articles

Equating categorially names and quantifiers within first-order logic

Authors

  • Jacek Paśniczek Maria Curie-Skłodowska University, Lublin

DOI:

https://doi.org/10.12775/LLP.2002.007

Abstract

Grammarians traditionally consider quantifier expressions such as something, everything, somebody, everybody, some dog, every dog together with names (singular name expression) as belonging to the noun phrases category. The reason is simple: both quantifier expressions and names can be used as subjects in sentences. Logicians on the other hand, usually treat quantifier expression (in short: quantifiers) as operators, i.e. as expressions of a different category from the name category. The source of this distinction seems clear: names are categorametic, whereas operators are syncategorsmetic expressions. However, when we are trying to explain the opposition categorametic-syncategorametic we usually give names and quantifiers as paradigmatic examples respectively.

Author Biography

Jacek Paśniczek, Maria Curie-Skłodowska University, Lublin

Department of Logic

References

Barwise, Jon, and Cooper, Richard [1981], “Generalized Quantifiers and natural language”, Linguistics and Philosophy, Vol. 4.

Bealer, George [1982], Quality and Concept, Oxford University Press.

Bencivenga, Ernanno [1986], “Free Logics”, in: D. Gabbay, and F. Guenthner, Handbook of Philosophical Logic, Dordrecht: D. Reidel Publishing Company, Vol. 3.

Chierchia, Gennaro and McConnell-Ginet, Sally [1990], Meaning and Grammar. An Introduction to Semantics, MIT Press, Cambridge, Massachusetts, London, England.

Cocchiarella, Nino [1986], “Frege, Russell and Logicism: a Logical Reconstruction” in: Frege Synthesized, L. Haarparanta and J. Hintikka (eds.), Dordrecht: Reidel.

Dowty, R.D., Wall, R.E., and Peters, S. [1981], Introduction to Montague Semantics, Dordrecht, Boston, London: Reidel.

Ebbinghaus, H.D., Flum, J., Thomas, W. Mathematical Logic [second edition 1994], Springer Verlag.

Jacquette, Dale [1996], Meinongian Logic: The Semantics of Existence and Nonexistence, Berlin, New York: Walter de Gruyter & Co.

Menzel, Christopher [1986], “A complete, type-free, second order logic and its philosophical foundations”, technical report #CSLI-86-40, CSLI, Stanford University.

Montague, Richard [1974], “Pragmatics”, in: R. Thomason, (ed.), Formal Philosophy: Selected Papers of Richard Montague, Yale University Press, New Have & London.

Mostowski, Andrzej [1957], “On generalization of quantifiers”, Fundamenta Mathematicæ, Vol. 44.

Parsons, Terence [1998], Nonexistent Objects, Yale University Press, New Haven & London.

Paśniczek, Jacek [1998], The Logic of Intensional Objects. A Meinongian version of Classical Logic, Kluwer Academic Publishers, Dordrecht/Boston/London.

Quine, Williard. V. [1963], Set Theory and Its Logic, Harvard University Press.

Routley, Richard [1980], Exploring Meinong’s Jungle and Beyond, Department Monograph #3, University Canberra.

Sher, Gila [1991], The Bounds of Logic. A Generalized Viewpoint, MIT Press, Cambridge, Massachusetts, London.

Westerstähl, Dag [1989], “Quantifiers in Formal and Natural languages”, in Gabbay and Guenthner, Vol. IV, [1989].

Zalta, Edward [1983], Abstracts Objects: An Introduction to Axiomatic Metaphysics, D. Reidel, Dordrecht.

Zalta, Edward [1988], Intensional Logic and the Metaphysics of Intesionality, MIT Press, Cambridge, Massachusetts, London.

Downloads

  • PDF

Published

2004-01-19

How to Cite

1.
PAŚNICZEK, Jacek. Equating categorially names and quantifiers within first-order logic. Logic and Logical Philosophy. Online. 19 January 2004. Vol. 10, no. 10, p. 119–129. [Accessed 6 July 2025]. DOI 10.12775/LLP.2002.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

No. 10 (2002)

Section

Articles

Stats

Number of views and downloads: 458
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop