Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Ecological Questions

Body size and the relative abundance of species
  • Home
  • /
  • Body size and the relative abundance of species
  1. Home /
  2. Archives /
  3. Vol. 10 (2008) /
  4. Articles

Body size and the relative abundance of species

Authors

  • Werner Ulrich Department of Animal Ecology, Institute of Ecology and Protection of Environment, Nicolaus Copernicus University

DOI:

https://doi.org/10.12775/v10090-009-0003-2

Keywords

species - abundance distribution, dominance - rank orders, lognormal distribution, random walk, core - satellite species, metabolic theory, temporal variability

Abstract

Existing models of species abundance distributions (SADs) can be divided into those that are based on concepts of common limited niche space (niche apportionment models, neutral models) and those that invoke standard statistical distributions (e. g. log-series, lognormal). While the first type of models assumes that competitive interactions lead to observed SADs, the models of the second type appear to be mainly statistical descriptors of SADs without deeper biological meaning. None of the models explicitly includes species body size as a factor influencing species abundances. Further, with the exception of recent neutral models they are not embedded into basic ecological and evolutionary models to explain local diversity and ecosystem functioning. Here I present a new random walk model of species abundances that is based on two well known ecological distributions, the abundance - body weight distribution and the species - body weight distribution to define long-term upper abundance boundaries (carrying capacities). I show that a simple random walk of species abundances around the carrying capacities not only generates observed SADs but is also able to explain other patterns of community structure like core - satellite distributions, temporal patterns of species turnover, variance - mean ratios, and biomass distributions.

References

Bell G., 2001, Neutral macroecology, Science 293: 2413 - 2418.

Blackburn T. M. & Gaston K. J., 1997, A critical assessment of the form of the interspecific relationship between abundance and body size in animals, Journal of Animal Ecology 66: 233 - 249. DOI: http://dx.doi.org/10.2307/6025

Bramson M., Cox J. T. & Durrett R., 1999, A spatial model for the abundance of species, Annals of Probability 26: 658 - 709.

Brown J. H., Marquet P. A. & Taper M. L., 1993, Spatial scaling of species composition: body masses of North American land mammals, American Naturalist 142: 573 - 584.

Brown J. H., Gillooly J. H., Allen A. P., Savage V. M. & West G. B., 2004, Towards a metabolic theory of ecology, Ecology 85: 1771 - 1789. DOI: http://dx.doi.org/10.1890/03-9000

Brown J. H., West G. B. & Enquist B. J., 2005, Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant, Functional Ecology 19: 735 - 738. DOI: http://dx.doi.org/10.1111/j.1365-2435.2005.01022.x

Byers J. A., 2001, Correlated random walk equations of animal dispersion resolved by simulation, Ecology 82: 1680 - 1690. DOI: http://dx.doi.org/10.1890/0012-9658(2001)082%5B1680:CRWEOA%5D2.0.CO;2

Cantos F. J. & Gomez-Mazaneque A., 1998, Informe sobre la campana de la anillamiento de aves en Espana, Ecologia 12: 351 - 401.

Chave J., 2004, Neutral theory and community ecology, Ecology Letters 7: 241 - 253. DOI: http://dx.doi.org/10.1111/j.1461-0248.2003.00566.x

Chislenko L. L., 1981, Structure of fauna and flora as dependent on organismal body size, Moscow Univ. Press, in Russian.

Connolly S. R., Hughes T. P., Bellwood D. R. & Karlson R. H., 2005, Community Structure of Corals and Reef Fishes at Multiple Scales, Science 309: 1363 - 1365.

Crowley P. H., 1992, Density dependence, boundedness, and attraction: detecting stability in stochastic systems, Oecologia 90: 246 - 254.

Cyr H., Peters R. H. & Downing J. A., 1997, Population density and community size structure: comparison of aquatic and terrestrial systems, Oikos 80: 139 - 149. DOI: http://dx.doi.org/10.2307/3546525

Engen S. & Lande R. 1996, Population dynamic models generating the lognormal species abundance distribution, Mathematical Bioscience 132: 169 - 183.

Farrell-Gray C. C. & Gotelli N. J., 2005, Allometric exponents support a 3/4-power scaling law, Ecology 86: 2083 - 2087. DOI: http://dx.doi.org/10.1890/04-1618

Fisher A. G., Corbet S. A. & Williams S. A., 1943, The relation between the number of species and the number of individuals in a random sample of an animal population, Journal of Animal Ecology 12: 42 - 58. DOI: http://dx.doi.org/10.2307/1411

Foley P., 1994, Predicting extinction times from environmental stochasticity and carrying capacity, Conservation Biology 8: 124 - 137. DOI: http://dx.doi.org/10.1046/j.1523-1739.1994.08010124.x

Gaston K., 1994, Rarity, Chapman & Hall, London.

Gaston K. J. & Blackburn T. M., 2000, Pattern and process in macroecology, Blackwell, Oxford.

Hubbell S. P., 2001, The unified theory of biogeography and biodiversity, University Press, Princeton.

Hubbell S. P., 2003, Modes of speciation and the lifespans of species under neutrality: a response to the comment of Robert E. Ricklefs, Oikos 100: 194 - 200.

Hubbell S. P. & Lake J., 2003, The neutral theory of biodiversity and biogeography, and beyond, [in:] T. M. Blackburn & K. J. Gaston (eds.), Macroecology: patterns and process. Blackwell, Oxford: 45 - 63.

Hughes R. G., 1984, A model of the structure and dynamics of benthic marine invertebrate communities, Marine Ecology Progress Series 15: 1 - 11. DOI: http://dx.doi.org/10.3354/meps015001

Kindlmann P., Dixon A. F. G. & Dostalkova I., 1999, Does body size optimization result in skewed body size distributions on a logarithmic scale?, American Naturalist 153: 445 - 447.

Kozłowski J. & Weiner J., 1997, Interspecific allometries are byproducts of body size optimization, American Naturalist 149: 352 - 380.

Kozłowski J. & Gawełczyk A. T., 2002, Why are species' body size distributions usually skewed to the right?, Functional Ecology 16: 419 - 432. DOI: http://dx.doi.org/10.1046/j.1365-2435.2002.00646.x

Kozłowski J. & Konarzewski M., 2004, Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?, Functional Ecology 18: 283 - 289. DOI: http://dx.doi.org/10.1111/j.0269-8463.2004.00830.x

Kunin W. E. & Gaston K. (eds.), 1997, The biology of rarity, Chapman & Hall, London.

Lloyd M., 1967, Mean crowding, Journal of Animal Ecology 36: 1 - 30. DOI: http://dx.doi.org/10.2307/3012

Loder N., 1997, Insect species - body size distributions, Thesis Univ. Sheffield.

MacArthur R. H., 1957, On the relative abundance of bird species, Proceedings of the National Academy of Science USA 43: 293 - 294. DOI: http://dx.doi.org/10.1073/pnas.43.3.293

Magurran A. E., 2003, Measuring biological diversity, Blackwell Publishers, Maldan, MA.

Magurran A. E., 2005, Species abundance distributions: pattern or process? Functional Ecology 19: 177 - 181. DOI: http://dx.doi.org/10.1111/j.0269-8463.2005.00930.x

Magurran A. E., 2007, Species abundance distributions overtime, Ecology Letters 10: 347 - 354. DOI: http://dx.doi.org/10.1111/j.1461-0248.2007.01024.x

Magurran A. E. & Henderson P. A., 2003, Explaining the excess of rare species in natural species abundance distributions, Nature 422: 714 - 716.

Maurer B. A., Brown J. H. & Rusler R. D., 1992, The micro and macro in body size evolution, Evolution 46: 939 - 953. DOI: http://dx.doi.org/10.2307/2409748

May R. M., 1975, Patterns of species abundance and diversity, [in:] M. L. Cody J. M. Diamond (eds.), Ecology and evolution of communities, Belknap, Cambridge: 81 - 120.

McGill B. J., 2003, Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact?, Ecology Letters 6: 766 - 773. DOI: http://dx.doi.org/10.1046/j.1461-0248.2003.00491.x

McGill B., Maurer B. A. & Weiser M. D., 2006, Empirical evaluation of the neutral theory, Ecology 87: 1411 - 1423. DOI: http://dx.doi.org/10.1890/0012-9658(2006)87%5B1411:EEONT%5D2.0.CO;2

McGill B. et al., 2007, Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework, Ecology Letters 10: 995 - 1015. DOI: http://dx.doi.org/10.1111/j.1461-0248.2007.01094.x

McKinney M. L., 1990, Trends in body size evolution, [in:] K. C. McNamara (ed.), Evolutionary trends, Univ. Arizona Press, Tucson: 75 - 118.

Morse D. R., Stork N. E. & Lawton J. H., 1988, Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland rain forest trees, Ecological Entomology 13: 25 - 37. DOI: http://dx.doi.org/10.1111/j.1365-2311.1988.tb00330.x

Motomura I., 1932, On the statistical treatment of communities, Zoological Magazine Tokyo 44: 379 - 383.

Moulliot D., Lepretre A., Andrei-Ruiz M.-C. & Viale D., 2000, The fractal model: an new model to describe the species accumulation process and relative abundance distribution (RAD), Oikos 90: 333 - 342. DOI: http://dx.doi.org/10.1034/j.1600-0706.2000.900214.x

Nee S., Harvey P. H. & May R. M., 1991, Lifting the veil on abundance patterns, Proc. R. Soc. Lond. B 243: 161 - 163.

Novotny V. & Basset Y., 2000, Rare species in communities of tropical insect herbivores: pondering the mystery of singletons, Oikos 89: 564 - 572. DOI: http://dx.doi.org/10.1034/j.1600-0706.2000.890316.x

Novotny V. & Kindlmann P., 1996, Distribution of body sizes in arthropod taxa and communities, Oikos 75: 75 - 82.

Nummelin M., 1998, Log-normal distribution of species abundances is not a universal indicator of rain forest disturbance, Journal of Applied Ecology 35: 454 - 457. DOI: http://dx.doi.org/10.1046/j.1365-2664.1998.00309.x

Pianka E. R., 1970, On r- and K-selection, American Naturalist 104: 592 - 597. DOI: http://dx.doi.org/10.1086/282697

Pollard E., Lakhani K. H. & Rothery P., 1987, The detection of density-dependence from a series of annual censuses, Ecology 68: 2046 - 2055. DOI: http://dx.doi.org/10.2307/1939895

Preston F. W., 1962, The canonical distribution of commonness and rarity. Part I and II, Ecology 43: 185 - 215, 410 - 432. DOI: http://dx.doi.org/10.2307/1931976

Purtauf T., Dauber J. & Wolters V., 2005, The response of carabids to landscape simplification differs between trophic groups, Oecologia 142: 458 - 464.

Reich P. B., Tjoelker M. G., Machado J.-L. & Oleksyn J., 2006, Universal scaling of respiratory metabolism, size and nitrogen in plants, Nature 439: 457 - 461.

Savage V. M., Gillooly J. F., Woodruff W. H., West G. B., Allen A. P., Enquist B. J. & Brown J. H., 2004, The predominance of quarter-power scaling in biology, Funct. Ecol. 18: 257 - 282. DOI: http://dx.doi.org/10.1111/j.0269-8463.2004.00856.x

Smith F. A. et al., 2004, Similarity of Mammalian body size across the taxonomic hierarchy and across space and time, American Naturalist 163: 672 - 691.

Solé R. & Alonso D., 1998, Random walks, fractals and the origins of rainforest diversity, Advances in Complex Systems E 62: 8466 - 8484.

Sugihara G., 1980, Minimal community structure: an explanation of species abundance patterns, American Naturalist 116: 770 - 787. DOI: http://dx.doi.org/10.1086/283669

StatSoft, 2005, Statistica (data analysis software system), version 7. 1 http://www.statsoft.com/

Stork N. E. & Blackburn T. M., 1993, Abundance, body size and biomass of arthropods in tropical forest, Oikos 67: 483 - 489. DOI: http://dx.doi.org/10.2307/3545360

Taylor L. R., 1961, Aggregation, variance and the mean, Nature 332: 721 - 722.

Taylor L. R., Woiwod I. P. & Perry J. N., 1980, Variance and the large scale spatial stability of aphids, moths and birds, Journal of Animal Ecology 49: 831 - 854. DOI: http://dx.doi.org/10.2307/4230

Taylor L. R. & Woiwod I. P., 1982, Comparing synoptic dynamics. I. Relationship between inter- and intraspecific spatial and temporal variance/mean population parameters, Journal of Animal Ecology 51: 879 - 906. DOI: http://dx.doi.org/10.2307/4012

Tokeshi M., 1990, Niche apportionment or random assortment: species abundance patterns revisited, Journal of Animal Ecology 59: 1129 - 1146. DOI: http://dx.doi.org/10.2307/5036

Tokeshi M., 1996, Power fraction: a new explanation of relative abundance patterns in species-rich assemblages, Oikos 75: 543 - 550.

Tokeshi M., 1999, Species coexistence, Blackwell, Oxford.

Ugland K. I. & Gray J. S., 1982, Lognormal distributions and the concept of community equilibrium, Oikos 39: 171 - 178. DOI: http://dx.doi.org/10.2307/3544482

Ulrich W., 1999, The density - size and the biomass - weight distribution is generated by the species - size distribution together with density fluctuations: evidence from model species distributions in the Hymenoptera, Polish Journal of Ecology 47: 87 - 101.

Ulrich W., 2001, Relative abundance distributions of species: The need to have a new look at them, Polish Journal of Ecology 49: 393 - 407.

Ulrich W., 2002, RAD - a FORTRAN program for the study of relative abundance distributions. www.uni.torun.pl/~ulrichw

Ulrich W., 2004, Neutral macroecology - ecology without biology?, Ecological Questions 4: 113 - 126.

Ulrich W., 2005, Die Hymenopteren einer Wiese auf Kalkgestein: Ökologische Muster einer lokalen Tiergemeinschaft, Schriftenreihe des Forschzentrums Waldökosysteme A 195: 1 - 203.

Ulrich W., 2006, Body size distributions of European Hymenoptera, Oikos 114: 518 - 528. DOI: http://dx.doi.org/10.1111/j.2006.0030-1299.14839.x

Ulrich W., 2007, Species abundance distributions in space and time, Ecological Questions 8: 15 - 20.

Ulrich W., Buszko J. & Czarnecki A., 2005, The local interspecific abundance - body weight relationship of ground beetles: A counterexample to the common pattern, Polish Journal of Ecology 53: 113 - 117.

Ulrich W. & Ollik M., 2003, The internet database of relative abundance distributions www.uni.torun.pl/~ulrichw

Ulrich W. & Ollik M., 2004, Frequent and occasional species and the shape of relative abundance distributions, Diversity & Distributions 10: 263 - 269.

Ulrich W. & Zalewski M., 2006, Abundance and co-occurrence patterns of core and satellite species of ground beetles on small lake islands, Oikos 114: 338 - 348. DOI: http://dx.doi.org/10.1111/j.2006.0030-1299.14773.x

Ulrich W. & Zalewski M., 2007, Are ground beetles neutral?, Basic and Applied Ecology 9: in press. DOI: http://dx.doi.org/10.1016/j.baae.2006.08.002

Williamson M. & Gaston K. J., 2005, The lognormal distribution is not an appropriate null hypothesis for the species - abundance distribution, Journal of Animal Ecology 74: 409 - 422. DOI: http://dx.doi.org/10.1111/j.1365-2656.2005.00936.x

White C. R. & Seymour R. S., 2003, Mammalian basal metabolic rate is proportional to body mass (2/3), Proceedings of the National Academy of Sciences USA 100: 4046 - 4049. DOI:http://dx.doi.org/10.1073/pnas.0436428100

Ecological Questions

Downloads

  • PDF

Published

2008-07-21

How to Cite

1.
ULRICH, Werner. Body size and the relative abundance of species. Ecological Questions. Online. 21 July 2008. Vol. 10, pp. 19-29. [Accessed 5 July 2025]. DOI 10.12775/v10090-009-0003-2.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 10 (2008)

Section

Articles

Stats

Number of views and downloads: 387
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

species - abundance distribution, dominance - rank orders, lognormal distribution, random walk, core - satellite species, metabolic theory, temporal variability
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop