Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils

Sonia Szymańska, Agnieszka Piernik, Katarzyna Hrynkiewicz

DOI: http://dx.doi.org/10.12775/ecoq-2013-0001

Abstract


Increased soil salinization may be caused by a natural (e.g. climate change) and anthropogenic (e.g. improper fertilization and irrigation of agricultural land) factors. The submitted work assumes that microorganisms associated with plant halophytes have a unique metabolic properties that can stimulate plant growth under salt stress. The aim of the study was to determine the abundance and metabolic biodiversity of endophytic and rhizosphere microorganisms co-existing with Aster tripolium L. and compare them with the properties of soil microorganisms not affected by plant roots at a salty meadows in the vicinity of a soda factory (central Poland). In order to select halotolerant and halophilic microorganisms culture medium was enriched with various concentrations of NaCl (0, 100, 200, 400, 600 mM NaCl). Total metabolic activity of endophytic, rhizosphere and soil populations was measured to compare the community-level physiological profiles. Results of our study revealed that bacterial and fungal density increased in the following order: endophytes < soil < rhizosphere. Only the highest concentration (600 mM) of NaCl decreased the number of microorganisms. The highest total microbial metabolic activity was observed for the rhizosphere, while the activity of endophytes was higher compare to soil populations. To carbon sources which significantly differentiated zones belonged: D-lactose, 4-hydroxybenzoic acid and L-asparagine. The results are preliminary studies leading to the development of inoculum based on selected microbial halotolerant and halophilic strains which can be used in agriculture and/or recultivation of saline soils.


Keywords


salinity; inland salt marsh; endophytes; rhizosphere microorganisms; BIOLOG EcoPlates

Full Text:

PDF

References


Andersone U., Samsone I. & Ievinsh G., 2012, Protection of photosynthesis in coastal salt marsh plants Aster tripolium and Hydrocotyle vulgaris in conditions of increased soil salinity, Environmental and Experimental Biology 10: 89-97.

Bianco C. & Defez R., 2011, Soil Bacteria Support and Protect Plants Against Abiotic Stresses, [in:] A. Shanker, B. Venkateswarlu (eds), Abiotic Stress in Plants – Mechanisms and Adaptations, Institute of Genetics and Biophysics, “Adriano Buzzati Traverso”, Italy, Available from: http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/soil-bacteria-support-and-protect-plants-against-abiotic-stresses.

Breitkreuz K. E., Allan W. L., Van Cauwenberghe O. R., Jakobs C., Talibi D., André B. & Shelp B. J., 2003, A Novel γ-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency, Journal of Biological Chemistry 278: 41552-41556. doi: 10.1074/jbc.M305717200

Campbell C. D., Grayston S. J. & Hirst D. J., 1997, Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities, Journal of Microbiological Methods 30: 33-41. DOI 10.1016/S0167-7012(97)00041-9

Classen A. T., Boyle S. I., Haskins K. E., Overby S. T. & Hart S. C., 2003, Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils, FEMS Microbiolology Ecology 44: 319-328. DOI: 10.1016/S0168-6496(03)00068-0

Chowdhury N., Marschner P. & Burns R., 2011, Response of microbial activity and community structure to decreasing soil osmotic and matric potential, Plant Soil 344: 241-254. DOI 10.1007/s11104-011-0743-9

El-Swaify S. A., 2000, Soil and Water Salinity, [in:] J. A. Silva, R. Uchida (eds), Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: 151-158.

Evelin H., Kapoor R. & Giri B., 2009, Arbuscular mycorrhizal fungi in alleviation of salt stress: a review, Annales Botanici 104: 1263-1280. doi: 10.1093/aob/mcp251

FAO, 2008, FAO Land and Plant Nutrition Management Service, Available from: http://www.fao.org/ ag/agl/ agll/spush

Frąc M., Oszust K. & Lipiec J., 2012, Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with Dairy Sewage Sludge, Sensors 12: 3253-3268. doi: 10.3390/s120303253

Gago C., Sousa A. R., Juliao M., Miguel G., Antunes D. C. & Panagopoulos T., 2011, Sustainable use of energy in the storage of halophytes used for food, International Journal of Energy and Environment 5: 592-599.

Garland J. L. & Mills A. L., 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbonsource utilization, Applied and Environmental Microbiology 57: 2351-2359.

Glick B. R., 2012, Plant Growth-Promoting Bacteria: Mechanisms and Applications, Scientifica: Article ID 963401: 1-15. doi:10.6064/2012/963401

Gontia-Mishra I. & Sharma A., 2012, Exogenously supplied osmoprotectants confer enhanced salinity tolerance in rhizobacteria, Journal of Ecobiotechnology 4: 11-13.

Kepel A., Heise W., Pawlaczyk P., Urbański P. & Górski P., 2013, Aktualizacja listy gatunków roślin objętych ochroną gatunkową oraz wskazania dla ich ochrony [Updating the list of protected plant species and indications for their protection], Polskie Towarzystwo Ochrony Przyrody Salamandra, Poznań.

Kloepper J. W., Rodriguez-Ubana R., Zehnder G. W., Murphy J. F., Sikora E. & Fernández C., 1999, Plant root-bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases, Australasian Plant Pathology 28: 21-26.

Kobayashi D. Y. & Palumbo J. D., 2000, Bacterial endophytes and their effects on plants and uses in agriculture, [in:] C. W. Bacon, J. F. White (eds), Microbial endophytes, Marcel Dekker, Inc., New York: 199-233.

Ladeiro B., 2012, Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements, Journal of Botany Article ID 310705: 1-7. doi: 10.1155/2012/310705

Lauber C. L., Strickland M. S., Bradford M. A. & Noah F. N., 2008, The influence of soil properties on the structure of bacterial and fungal communities across landuse types, Soil Biology & Biochemistry 40: 2407-2415.

Litchfield C. D. & Gillevet P. M., 2002, Microbial diversity and complexity in hypersaline environments: a preliminary assessment, Journal of Industrial Microbiology & Biotechnology 28: 48-55. DOI: 10.1038/sj/jim/7000175

Long H. H., Schmidt D. D. & Baldwin I. T., 2008, Native bacterial endophytes promote host growth in a species- specific manner; phytohormone manipulations do not result in common growth responses, PLoS ONE 3: e2702. doi: 10.1371/journal.pone.0002702.

Merkl N. & Schultze-Kraft R., 2006, Influence of the tropical grass Brachiaria brizantha (Hochst ex. A. Rich.) stapf on bacterial community structure in petroleum contamined soils, International Journal of Soil Science 1: 108-117.

Milosević N., Marinković J. B. & Tintor B., 2012, Mitigating abiotic stress in crop plants by microorganisms, Proc. Nat. Sci, Matica Srpska Novi Sad 123: 17-26. doi: 10.2298/ZMSPN1223017M

Moradi A., Tahmourespour A., Hoodaji M. & Khorsandi F., 2011, Effect of salinity on free living – diazotroph and total bacterial populations of two saline soils, African Journal of Microbiology Research 5: 144-148.

Neto D., Carvalho L. M., Cruz C. & Martins-Loução M. A., 2006, How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants?, Plant and Soil 279: 51-63. DOI 10.1007/s11104-005-6333-y

Oren A., 2006, Life at high salt concentrations, Prokaryotes 2: 263-282. DOI 10.1007/978-3-642-30123-0_57

Piernik A., 2003, Three types of gradients in the saline ecosystem, Ecological Questions 3: 85-92.

Piernik A., 2006, Growth of three meadow species along a salinity gradient in an inland saline habitat: transplant experiment, Polish Journal of Ecology 54: 117-126.

Piernik A., 2012, Ecological pattern of inland salt marsh vegetation in central Europe, Wydawnictwo Naukowe UMK, Toruń.

Ramadoss D., Lakkineni V. K., Bose P., Ali S. & Annapurna K., 2013, Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats, Springer Plus, 2-6. doi: 10.1186/2193-1801-2-6

Rietz D. N., Haynes R. J. & Chidoma S., 2001, Effects of soil salinity induced under irrigated sugarcane in the Zimbabwean lowveld on soil microbial activity, Proceeding of the South African Sugar Technologists’ Association 75: 68-74.

Sardinha M., Müller T., Schmeisky H. & Joergensen R. G., 2003, Microbial performance in soils along a salinity gradient under acidic conditions, Applied Soil Ecology 23: 237-244. doi 10.1016/S0929-1393(03)00027-1

Sgroy V., Cassán F., Masciarelli O., Del Papa M. F., Lagares A. & Luna V., 2009, Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera, Applied Microbiology and Biotechnology 85: 371-81. DOI 10.1007/s00253-009-2116-3

Shah S. A. & Shah Z., 2011, Changes in soil microbial characteristics with elevated salinity, Sarhad Journal of Agriculture 27: 233-244.

Silva Maganhotto de Souza C. M. & Fay E. F., 2012, Effect of Salinity on Soil Microorganisms, [in:] M. C. Hernandez- Soriano (ed.), Soil Health and Land Use Management, InTech, DOI: 10.5772/2516.

ter Braak C. J. F. & Šmilauer P., 2002, CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, NY, USA.

Timmusk S., Paalme V., Pavlicek T., Bergquist J., Vangala A., Danilas T. & Eviatar N., 2011, Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates, PLoS ONE 6: e17968, doi:10.1371/ journal.pone.0017968.

Tripathi S., Kumari S., Chakraborty A. & Gupta A., 2006, Microbial biomass and its activities in salt-affected coastal soils, Biology and Fertility of Soils 42: 273- 277. DOI 10.1007/s00374-005-0037-6

Upadhyay S. K., Maurya S. K. & Singh D. P., 2012, Salinity tolerance in free living plant growth promoting rhizobacteria, Indian Journal of Scientific Research 3: 73-78.

Wang Y. & Dai Ch.-Ch., 2011, Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation, Annals of Microbiology 61: 207-215. DOI 10.1007/s13213-010-0120-6

Yang X., Ji J., Wang G., Yang S., Zhao Q. & Lontchi T. J., 2011, Over-expressing Salicornia europaea (SeNHX1) gene in tobacco improves tolerance to salt, African Journal of Biotechnology 10: 16452-16460.

Yang Q., Wang X. & Shen Y., 2013, Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention, Journal of Soil Science and Plant Nutrition 13: 187-199. DOI 10.4067/S0718-95162013005000017

Zinniel D. K., Lambrecht P., Harris N. B., Feng Z., Kuczmarski D., Higley P., Ishimaru C. A., Arunakumari A., Barletta R. G. & Vidaver A. K., 2002, Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants, Applied and Environmental Microbiology 68: 2198-2208. doi: 10.1128/AEM.68.5.2198-2208.2002




Partnerzy platformy czasopism